Structure 1: McKercher Residence

Structural Calculations

STRUX Project No.1013.24

For ARCH Community Housing Trust

Book 1 of 1

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24 Structure 1: McKercher Residence

- 1.1 Gravity Design
- 1.1.1 Material Weights
- 1.1.2 Wall Footing Design
- 1.1.3 Framing Key Plan
- 1.1.4 Header Design
- 1.1.5 Beam Design
- 1.1.6 Column Design
- 1.1.7 Column Footing Design
- 1.1.8 Joist Design
- 1.2 Lateral Design
- 1.2.1 Wind Loading
- 1.2.2 Seismic Loading
- 1.2.3 Diaphragm Design
- 1.2.4 Shear Wall Key Plans
- 1.2.5 Shear Wall Design

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

1.1.1 Material Weights

Exterior Wall

Ext. Finish	3	psf
Sheathing	2	psf
Studs	3	psf
Insulation	2	psf
Int. Finish	3	psf
Mech Allow	2	psf
Total	15	psf

Interior Wall

Int. Finish	3	psf
Studs	2	psf
Int. Finish	3	psf
Mech Allow	4	psf
Total	12	psf

	<u>Roof</u>	
Roofing	3	psf
Sheathing	2	psf
Joist/Truss	3	psf
Insulation	2	psf
Clg. Finish	3	psf
Mech Allow	5	psf
Total	18	psf

	<u>Floor</u>	
Flr. Finish	4	psf
Sheathing	3	psf
Joist/Truss	3	psf
Clg. Finish	3	psf
Mech Allow	2	psf
Total	15	psf

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

1.1.2 Wall Footing Design

Wall Footing Design

Plan ID: TYPICAL WALL WI

Gravity Loads

Туре	p (psf)	L (ft)	% of L	w (plf)
DL (ROOF)	18	15.5	100	279
SL (ROOF)	100	15.5	100	1550
DL (FLOOR)	15	12.75	50	95.625
LL (FLOOR)	40	12.75	50	255
DL (WALL)	15	8	100	120

 p_{allow} = 1500.00 psf

w_{ftg} = 1.36 ft

Provide:	18" wide x 8" deep ftg w/ (2) # 4 (L)
	6" Conc. Stem w/ #4 @ 18" OC (V) & #4 @ 12" OC (H)

Plan ID:PONY WALLWL2

Gravity Loads

Туре	p (psf)	L (ft)	% of L	w (plf)
DL (FLOOR)	15	13	100	195
LL (FLOOR)	40	13	100	520

 p_{allow} = 1500.00 psf w_{ftg} = 0.48 ft

Provide: 12" wide x 8" deep ftg w/ (2) # 4 (L)

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

1.1.3 Framing Key Plan

Front

Right

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

1.1.4 Header Design

STRUK

Date:	2	/22	/2024
-------	---	-----	-------

H (VEV DI AN)	I 1 (ft)	Tumo		Un	iform Lo	oad			Concent	rated L	oad
Π (KEI FLAN)		Туре	p (psf)	L(ft)	x1 (ft)	x2 (ft)	w (plf)	Туре	BM/C	x(ft)	p (lb)
		DL (ROOF)	18	15.50	0.00	6.00	279				
H1	6.00	SL (ROOF)	100	15.50	0.00	6.00	1550				
		DL (WALL)	15	1.13	0.00	6.00	17				
		DL (ROOF)	18	15.50	0.00	2.00	279				
H2	2.00	SL (ROOF)	100	15.50	0.00	2.00	1550				
		DL (WALL)	15	1.13	0.00	2.00	17				
		DL (ROOF)	18	15.50	0.00	5.00	279				
Н3	5.00	SL (ROOF)	100	15.50	0.00	5.00	1550				
		DL (WALL)	15	1.13	0.00	5.00	17				
		DL (ROOF)	18	15.50	0.00	3.00	279				
H4	3.00	SL (ROOF)	100	15.50	0.00	3.00	1550				
		DL (WALL)	15	1.13	0.00	3.00	17				
		DL (ROOF)	18	5.25	0.00	18.00	95				
H5	18.00	SL (ROOF)	100	5.25	0.00	18.00	525				
		DL (WALL)	15	1.13	0.00	18.00	17				
H6					NC)T USED					
		DL (ROOF)	18	3.50	0.00	2.50	63				
H7	2.50	SL (ROOF)	100	3.50	0.00	2.50	350				
		DL (WALL)	15	1.13	0.00	2.50	17				
		DL (ROOF)	18	14.00	0.00	2.67	252				
H8	2.67	SL (ROOF)	100	14.00	0.00	2.67	1400				
		DL (WALL)	15	1.13	0.00	2.67	17				
		DL (ROOF)	18	2.00	0.00	8.00	36				
Н9	8.00	SL (ROOF)	100	2.00	0.00	8.00	200				
		DL (WALL)	15	1.13	0.00	8.00	17				
		DL (ROOF)	18	13.00	0.00	6.00	234				
H10	6.00	SL (ROOF)	100	13.00	0.00	6.00	1300				
		DL (WALL)	15	1.13	0.00	6.00	17				

ENGINEERING LLC											
H (VEV DI AN)			Uniform Load					Concentrated Load			
II (KET FLAN)	LI (IL)	Туре	p (psf)	L(ft)	x1 (ft)	x2 (ft)	w (plf)	Туре	BM/C	x(ft)	p (lb)
		DL (ROOF)	18	14.50	0.00	5.00	261				
H11	5.00	SL (ROOF)	100	14.50	0.00	5.00	1450				
		DL (WALL)	15	1.13	0.00	5.00	17				

H (KEY PLAN)	H (PLAN)	Header Design	Req. Trimmer
H1	H1	(2) 1.75"x 9.5" 2.0E LVL	(2) 2x
H2	H2	(2) 2x8 DF-L #2	(2) 2x
НЗ	H1	(2) 1.75"x 9.5" 2.0E LVL	(2) 2x
H4	Н2	(2) 2x8 DF-L #2	(2) 2x
Н5	H4	(3) 1.75"x 14" 2.0E LVL	(2) 2x
H7	H2	(2) 2x8 DF-L #2	(1) 2x
Н8	Н2	(2) 2x8 DF-L #2	(2) 2x
Н9	Н3	(2) 2x8 DF-L #2	(2) 2x
H10	НЗ	(2) 1.75"x 9.5" 2.0E LVL	(2) 2x
H11	НЗ	(2) 1.75"x 9.5" 2.0E LVL	(2) 2x

HEADER, H1 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6032 @ 1 1/2"	7875 (3.00")	Passed (77%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4099 @ 1' 1/2"	7265	Passed (56%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	9062 @ 3' 3"	13541	Passed (67%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.133 @ 3' 3"	0.156	Passed (L/566)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.159 @ 3' 3"	0.313	Passed (L/472)		1.0 D + 1.0 S (All Spans)

Member Length : 6' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Support:		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	2.30"	994	5037	6032	None
2 - Trimmer - DF	3.00"	3.00"	2.30"	994	5037	6032	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 6" o/c	
Bottom Edge (Lu)	6' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	9.7		
1 - Uniform (PSF)	0 to 6' 6"	15' 6"	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 6' 6"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

HEADER, H2 2 piece(s) 2 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

	-				
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2083 @ 0	2813 (1.50")	Passed (74%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	733 @ 8 3/4"	3002	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	1172 @ 1' 1 1/2"	2720	Passed (43%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.006 @ 1' 1 1/2"	0.056	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.007 @ 1' 1 1/2"	0.112	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 2' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	339	1744	2083	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	339	1744	2083	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 3" o/c	
Bottom Edge (Lu)	2' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 2' 3"	15' 6"	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 2' 3"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

HEADER, H3 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs) 5104 @ 1 1/2" 78		7875 (3.00")	Passed (65%) 1.0 D + 1.0 S (All		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3171 @ 1' 1/2"	7265	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6394 @ 2' 9"	13541	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.071 @ 2' 9"	0.131	Passed (L/881)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.086 @ 2' 9"	0.262	Passed (L/736)		1.0 D + 1.0 S (All Spans)

Member Length : 5' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Support:		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.94"	841	4262	5104	None
2 - Trimmer - DF	3.00"	3.00"	1.94"	841	4262	5104	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 6" o/c	
Bottom Edge (Lu)	5' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 6"	N/A	9.7		
1 - Uniform (PSF)	0 to 5' 6"	15' 6"	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 5' 6"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

2/22/2024 10:07:44 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: 1013.24 Mckercher Residence Page 4 / 18

HEADER, H4 2 piece(s) 2 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3210 @ 1 1/2"	5625 (3.00")	Passed (57%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1643 @ 10 1/4"	3002	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2422 @ 1' 9"	2720	Passed (89%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.026 @ 1' 9"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.030 @ 1' 9"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 3' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.71"	498	2712	3210	None
2 - Trimmer - DF	3.00"	3.00"	1.71"	498	2712	3210	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 6" o/c	
Bottom Edge (Lu)	3' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 6"	15' 6"	18.0	100.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

HEADER, H5 3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6088 @ 1 1/2"	11813 (3.00")	Passed (52%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	5156 @ 1' 5"	16060	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	27402 @ 9' 3"	41846	Passed (65%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.580 @ 9' 3"	0.608	Passed (L/378)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.727 @ 9' 3"	0.913	Passed (L/301)		1.0 D + 1.0 S (All Spans)

Member Length : 18' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.55"	1232	4856	6088	None
2 - Trimmer - DF	3.00"	3.00"	1.55"	1232	4856	6088	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 1" o/c	
Bottom Edge (Lu)	18' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 18' 6"	N/A	21.5		
1 - Uniform (PSF)	0 to 18' 6"	5' 3"	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 18' 6"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

HEADER, H7 2 piece(s) 2 x 8 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	599 @ 0	2813 (1.50")	Passed (21%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	281 @ 8 3/4"	3002	Passed (9%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	412 @ 1' 4 1/2"	2720	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.003 @ 1' 4 1/2"	0.069	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.004 @ 1' 4 1/2"	0.138	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 2' 9" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	118	481	599	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	118	481	599	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 9" o/c	
Bottom Edge (Lu)	2' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 9"	N/A	5.5		
1 - Uniform (PSF)	0 to 2' 9"	3' 6"	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 2' 9"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

HEADER, H8 2 piece(s) 2 x 8 DF No.2

Overall Length: 2' 11 1/16"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2445 @ 0	2813 (1.50")	Passed (87%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1224 @ 8 3/4"	3002	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1785 @ 1' 5 1/2"	2720	Passed (66%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.015 @ 1' 5 1/2"	0.073	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.018 @ 1' 5 1/2"	0.146	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 2' 11 1/16" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	401	2044	2445	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	401	2044	2445	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 11" o/c	
Bottom Edge (Lu)	2' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2' 11 1/16"	N/A	5.5		
1 - Uniform (PSF)	0 to 2' 11 1/16"	14'	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 2' 11 1/16"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

HEADER, H9 2 piece(s) 2 x 8 DF No.2

PASSED

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1100 @ 1 1/2"	5625 (3.00")	Passed (20%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	879 @ 10 1/4"	3002	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2201 @ 4' 3"	2720	Passed (81%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.137 @ 4' 3"	0.206	Passed (L/724)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.177 @ 4' 3"	0.313	Passed (L/560)		1.0 D + 1.0 S (All Spans)

Member Length : 8' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (5/16").

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.50"	250	850	1100	None
2 - Trimmer - DF	3.00"	3.00"	1.50"	250	850	1100	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 6" o/c	
Bottom Edge (Lu)	8' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 6"	N/A	5.5		
1 - Uniform (PSF)	0 to 8' 6"	2'	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 8' 6"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

HEADER, H10 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5073 @ 1 1/2"	7875 (3.00")	Passed (64%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3447 @ 1' 1/2"	7265	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	7622 @ 3' 3"	13541	Passed (56%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.111 @ 3' 3"	0.156	Passed (L/674)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.134 @ 3' 3"	0.313	Passed (L/562)		1.0 D + 1.0 S (All Spans)

Member Length : 6' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads	to Support:			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.93"	848	4225	5073	None
2 - Trimmer - DF	3.00"	3.00"	1.93"	848	4225	5073	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 6" o/c	
Bottom Edge (Lu)	6' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	9.7		
1 - Uniform (PSF)	0 to 6' 6"	13'	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 6' 6"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

HEADER, H11 2 piece(s) 1 3/4" x 9 1/2" 2.0E Microllam® LVL

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4779 @ 1 1/2"	7875 (3.00")	Passed (61%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2969 @ 1' 1/2"	7265	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	5988 @ 2' 9"	13541	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.067 @ 2' 9"	0.131	Passed (L/942)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.080 @ 2' 9"	0.262	Passed (L/786)		1.0 D + 1.0 S (All Spans)

Member Length : 5' 6" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.82"	792	3987	4779	None
2 - Trimmer - DF	3.00"	3.00"	1.82"	792	3987	4779	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 6" o/c	
Bottom Edge (Lu)	5' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 6"	N/A	9.7		
1 - Uniform (PSF)	0 to 5' 6"	14' 6"	18.0	100.0	Default Load
2 - Uniform (PSF)	0 to 5' 6"	1' 1 13/16"	15.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

2/22/2024 10:07:44 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: 1013.24 Mckercher Residence Page 11 / 18

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

1.1.5 Beam Design

		1.2 (61)	2 (ft) T-m c		Uniform Load					Concentrated Load			
BM	LI (Ħ)	L2 (IT)	L3 (R)	Гуре	p (psf)	L _{trib} (ft)	x1 (ft)	x2 (ft)	w (plf)	Туре	BM/C	x(ft)	P (lb)
PM1		0.00	0.00	DL (ROOF)	18	15.5	0	5.50 ·	279				
DMI	5.50	0.00	0.00	SL (ROOF)	100				1550				
PM2	11 50	11 50	0.00	DL (ROOF)	10	65	0	22.00	65				
DMZ	11.50	11.50	0.00	SL (ROOF)	100	0.5	0	0 23.00	650				

	Plan Plan		Reaction (lbs) and Connection Design							
BM/GI	Desig.	Beam Design	R	R DL	R LL	R SL	R Total	Connections		
RM1	RM1	(1) 6× 8 DE J #1	R1 (lb)	150	0	610	760			
DMI	DMI	(1) 0x 0 DF-L #1	R2 (lb)	150	0	610	760			
			R1 (lb)	437	0	3352	3789			
BM2	BM2	M2 5.5"x10.5" 24F-V4 GLULAM	R2 (lb)	1354	0	9648	11002			
			R2 (lb)	437	0	3352	3789			

BEAM, BM1 1 piece(s) 5 1/8" x 10 1/2" 24F-V4 DF Glulam

Overall Length: 6' 5"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5910 @ 4"	17617 (5.50")	Passed (34%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3454 @ 1' 4"	10933	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	7613 @ 3' 2 1/2"	21660	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.043 @ 3' 2 1/2"	0.192	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.051 @ 3' 2 1/2"	0.287	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length : 6' 5" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.85"	937	4973	5910	Blocking
2 - Stud wall - DF	5.50"	5.50"	1.85"	937	4973	5910	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 5" o/c					
Bottom Edge (Lu)	6' 5" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 5"	N/A	13.1		
1 - Uniform (PSF)	0 to 6' 5" (Front)	15' 6"	18.0	100.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering	
(512) 676-9004 matt@struxengineering.com	

BEAM, BM2 1 piece(s) 5 1/8" x 10 1/2" 24F-V4 DF Glulam

Overall Length: 24' 5"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11002 @ 12' 2 1/2"	17617 (5.50")	Passed (62%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4683 @ 13' 3 3/4"	10933	Passed (43%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	8463 @ 5' 1 5/16"	21660	Passed (39%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-13065 @ 12' 2 1/2"	16696	Passed (78%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.182 @ 5' 8 1/2"	0.396	Passed (L/782)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.201 @ 5' 8"	0.594	Passed (L/709)		1.0 D + 1.0 S (Alt Spans)

Member Length : 24' 5" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 6 11/16".

- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 11 1/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	437	3352	3789	Blocking
2 - Stud wall - DF	5.50"	5.50"	3.43"	1354	9648	11002	Blocking
3 - Stud wall - DF	5.50"	5.50"	1.50"	437	3352	3789	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	24' 5" o/c					
Bottom Edge (Lu)	24' 5" o/c					
Asymum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 24' 5"	N/A	13.1		
1 - Uniform (PSF)	0 to 24' 5" (Front)	6' 6"	12.0	100.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com

BEAM, BM2' 1 piece(s) 5 1/8" x 10 1/2" 24F-V4 DF Glulam

Overall Length: 12' 2 1/4"

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4432 @ 12' 1"	8809 (2.75")	Passed (50%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3613 @ 1' 4"	10933	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	12791 @ 6' 2 1/2"	21660	Passed (59%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.313 @ 6' 2 1/2"	0.392	Passed (L/450)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.357 @ 6' 2 1/2"	0.587	Passed (L/395)		1.0 D + 1.0 S (All Spans)

Member Length : 12' 2 1/4" System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Support		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	566	4035	4602	Blocking
2 - Stud wall - DF	2.75"	2.75"	1.50"	545	3886	4432	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 2" o/c				
Bottom Edge (Lu)	12' 2" o/c				
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 2 1/4"	N/A	13.1		
1 - Uniform (PSF)	0 to 12' 2 1/4" (Front)	6' 6"	12.0	100.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering	
matt@struxengineering.com	

2/22/2024 10:07:44 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: 1013.24 Mckercher Residence Page 14 / 18

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

1.1.6 Column Design

Wall Stud	I 1 (ft) Type		Uniform Load					Wall Stud Dosign
wan Stuu		туре	p (psf)	L(ft)	x1 (ft)	x2 (ft)	w (plf)	wall Stud Design
		DL (ROOF)	18	1117	0.00	24.00	259.56	
Ext Brg Wall	24.00	SL (ROOF)	100	14.42	0.00	24.00	1442	2X0 DF-L @ 16" OC
		DL (WALL)	15	9.00	0.00	24.00	135	10 00

<u>Column Design</u>

COLUMN	Column Height		N	COLUMN			
(KEY PLAN H (ft		Carried	P DL (lb)	P LL (lb)	P SL (lb)	Post Design	(PLAN)
C1	8.0	BM1	150	0	610	(1) 6x6 DF-L #2	C1
C2	8.0	BM1	150	0	610	(3) 2x6 DF-L #2	C2
C3	9.0	BM2	1354	0	9648	(1) 6x6 DF-L #2	C1
C4	9.0	BM2	437	0	3352	(3) 2x6 DF-L #2	C2

PASSED

COLUMN, C1 1 piece(s) 6 x 6 DF No.2

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (39%)		
Compression (lbs)	760	18526	Passed (4%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	760	898425	Passed (0%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

				_
Supports	Туре		Material	
Base	Plate		Steel	1
				_
Max Unbraced Length		Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	150	610	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

COLUMN, C2 1 piece(s) 6 x 6 DF No.2

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (39%)		
Compression (lbs)	11730	18526	Passed (63%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	11730	898425	Passed (1%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material
Base	Plate		Steel
Max Unbraced Length			Comments
Full Member Length		No bracing assumed.	

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	1980	9750	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

WALL STUD, WS1 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 9'

Member Height: 8' 7 1/2"

O. C. Spacing: 16.00"

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	19	50	Passed (38%)		
Compression (lbs)	2449	8510	Passed (29%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	2449	6445	Passed (38%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	102			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	91	1584	Passed (6%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	220 @ mid-span	1342	Passed (16%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.06 @ mid-span	0.57	Passed (L/1670)		1.0 D + 0.6 W
Bending/Compression	0.19	1	Passed (19%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/180)

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall	
Тор	Dbl 2X		Douglas Fir-Larch	Member Type : Stud	
Base	2X		Douglas Fir-Larch	Building Code : IBC 2018 Design Methodology : ASD	
				- Design methodology : NSD	
Max Unbraced Length			Comments]	

Drawing is Conceptual

Lateral Connections						
Supports	Connector	Type/Model	Quantity	Connector Nailing		
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A		
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A		

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Snow	
Vertical Load	Spacing	(0.90)	(1.15)	Comments
1 - Point (PLF)	16.00"	395.0	1442.0	Default Load

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	29.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (C), Mean Roof Height (15'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

1'

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004 matt@struxengineering.com	

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

1.1.7 Column Footing Design

<u>Column Footing Design</u>

COLUMN		POST FOOTING DESIGN											
COLOMIN	Key Label	P DL (lb)	P LL (lb)	POST FOOTING DESIGN L (lb) P SL (lb) SQ Ftg Size (ft) FTG Size Plan 0.0 610.0 0.71 FOOTING OK CF1 0.0 610.0 0.71 FOOTING OK CF1 0.0 9648.0 2.71 FOOTING OK CF1 0.0 3352.0 1.59 FOOTING OK CF1	Plan Label								
C1	CF1	150.0	0.0	610.0	0.71	FOOTING OK	CF1						
C2	CF1	150.0	0.0	610.0	0.71	FOOTING OK	CF1						
C3	CF1	1354.0	0.0	9648.0	2.71	FOOTING OK	CF1						
C4	CF1	437.0	0.0	3352.0	1.59	FOOTING OK	CF1						

Strux Engineering

General Footing

LIC# : KW-06011804, Build:20.23.08.30

DESCRIPTION: C1

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2021

General Information

Material Properties			
f'c : Concrete 28 day strength	;	3.0 ksi	
fy : Rebar Yield	6	0.0 ksi	
Ec : Concrete Elastic Modulus	=	3,12	2.0 ksi
Concrete Density	=	14	5.0 pcf
$_{m 0}$ Values Flexure	=	0	.90
Shear	=	0.7	50
Analysis Settings			
Min Steel % Bending Reinf.		=	
Min Allow % Temp Reinf.		=	0.00180
Min. Overturning Safety Factor		=	1.0
Min. Sliding Safety Factor		=	1.0
Add Ftg Wt for Soil Pressure		:	Yes
Use ftg wt for stability, moments & s	shears	:	Yes
Add Pedestal Wt for Soil Pressure		:	No
Use Pedestal wt for stability, mom &	shear	:	No

	Soil Design Values Allowable Soil Bearing	_	1 50 ksf	
	Soil Density	=	110.0 pcf	
	Increase Bearing By Footing Weight	=	No	
	Soil Passive Resistance (for Sliding)	=	250.0 pcf	
	Soil/Concrete Friction Coeff.	=	0.30	
	Increases based on footing Depth			
	Footing base depth below soil surface	=	ft	
	Allow press. increase per foot of depth	=	ksf	
80 .0:1	when footing base is below	=	ft	
.0:1	Increases based on footing plan dimension	on		
es	Allowable pressure increase per foot of de	əpth		
es	when may length or width is greater than	=	ksf	
No	when max. length of width is greater than	=	ft	

Project File: 1013.24 McKercher Residence.ec6

(c) ENERCALC INC 1983-2023

Dimensions

Width parallel to X-X Axis	=	2.50 ft
Length parallel to Z-Z Axis	=	2.50 ft
Footing Thickness	=	8.0 in

Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height	= = =	in in in
Rebar Centerline to Edge of (at Bottom of footing	Concrete =	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars = Reinforcing Bar Size =	#	4.0 4
Bars parallel to Z-Z Axis		
Number of Bars =		4.0
Reinforcing Bar Size =	#	4
Bandwidth Distribution Check (ACI 15.4.4	.2)	
Direction Requiring Closer Separation		
		n/a
# Bars required within zone		n/a
# Bars required on each side of zone		n/a

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	0.150			0.610			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

General Footing

LIC# : KW-06011804, Build:20.23.08.30

Strux Engineering

Project File: 1013.24 McKercher Residence.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: C1

DESIGN SUMMARY

ESIGN SU	MMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.1455	Soil Bearing	0.2183 ksf	1.50 ksf	+D+S about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.02141	Z Flexure (+X)	0.1445 k-ft/ft	6.748 k-ft/ft	+1.20D+1.60S
PASS	0.02141	Z Flexure (-X)	0.1445 k-ft/ft	6.748 k-ft/ft	+1.20D+1.60S
PASS	0.02141	X Flexure (+Z)	0.1445 k-ft/ft	6.748 k-ft/ft	+1.20D+1.60S
PASS	0.02141	X Flexure (-Z)	0.1445 k-ft/ft	6.748 k-ft/ft	+1.20D+1.60S
PASS	0.03096	1-way Shear (+X)	2.543 psi	82.158 psi	+1.20D+1.60S
PASS	0.03096	1-way Shear (-X)	2.543 psi	82.158 psi	+1.20D+1.60S
PASS	0.03096	1-way Shear (+Z)	2.543 psi	82.158 psi	+1.20D+1.60S
PASS	0.03096	1-way Shear (-Z)	2.543 psi	82.158 psi	+1.20D+1.60S
PASS	0.06855	2-way Punching	11.264 psi	164.317 psi	+1.20D+1.60S

Detailed Results

Soil Bearing								
Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing	Stress @ Loo	ation	Actual / Allow
Load Combination	Gross Allowable	(ir	ר)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.1207	0.1207	n/a	n/a	0.080
X-X, +D+S	1.50	n/a	0.0	0.2183	0.2183	n/a	n/a	0.146
X-X, +D+0.750S	1.50	n/a	0.0	0.1939	0.1939	n/a	n/a	0.129
X-X, +0.60D	1.50	n/a	0.0	0.07240	0.07240	n/a	n/a	0.048
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.1207	0.1207	0.080
Z-Z, +D+S	1.50	0.0	n/a	n/a	n/a	0.2183	0.2183	0.146
Z-Z, +D+0.750S	1.50	0.0	n/a	n/a	n/a	0.1939	0.1939	0.129
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.07240	0.07240	0.048

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning				
Sliding Stability				All units k
Force Application Axis Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
Footing Has NO Sliding				
Footing Flexure				

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.02625	+Z	Bottom	0.1728	AsMin	0.320	6.748	ок
X-X, +1.40D	0.02625	-Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +1.20D	0.02250	+Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +1.20D	0.02250	-Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +1.20D+0.50S	0.06063	+Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +1.20D+0.50S	0.06063	-Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +1.20D+1.60S	0.1445	+Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +1.20D+1.60S	0.1445	-Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +1.20D+0.70S	0.07588	+Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +1.20D+0.70S	0.07588	-Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +0.90D	0.01688	+Z	Bottom	0.1728	AsMin	0.320	6.748	OK
X-X, +0.90D	0.01688	-Z	Bottom	0.1728	AsMin	0.320	6.748	OK
Z-Z, +1.40D	0.02625	-X	Bottom	0.1728	AsMin	0.320	6.748	OK
Z-Z, +1.40D	0.02625	+X	Bottom	0.1728	AsMin	0.320	6.748	OK
Z-Z, +1.20D	0.02250	-X	Bottom	0.1728	AsMin	0.320	6.748	OK
Z-Z, +1.20D	0.02250	+X	Bottom	0.1728	AsMin	0.320	6.748	OK
Z-Z, +1.20D+0.50S	0.06063	-X	Bottom	0.1728	AsMin	0.320	6.748	OK

General Footing

LIC# : KW-06011804, Build:20.23.08.30

Strux Engineering

Project File: 1013.24 McKercher Residence.ec6 (c) ENERCALC INC 1983-2023

DESCRIPTION: C1

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*M k-ft	n	Status
Z-Z, +1.20D+0.50S	0.06063	+X	Bottom	0.1728	AsMin	0.320	6.7	748	ок
Z-Z, +1.20D+1.60S	0.1445	-X	Bottom	0.1728	AsMin	0.320	6.7	′48	OK
Z-Z, +1.20D+1.60S	0.1445	+X	Bottom	0.1728	AsMin	0.320	6.7	′48	OK
Z-Z, +1.20D+0.70S	0.07588	-X	Bottom	0.1728	AsMin	0.320	6.7	'48	OK
Z-Z, +1.20D+0.70S	0.07588	+X	Bottom	0.1728	AsMin	0.320	6.7	'48	OK
Z-Z, +0.90D	0.01688	-X	Bottom	0.1728	AsMin	0.320	6.7	'48	OK
Z-Z, +0.90D	0.01688	+X	Bottom	0.1728	AsMin	0.320	6.7	'48	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@ -Z Vu @	2+Z V	/u:Max Ph	iVn Vu/	Phi*Vn	Status
+1.40D	0.46 p	si	0.46 psi	0.46 psi	0.46 psi	0.46 psi	82.16 psi	0.01	OK
+1.20D	0.40 p	si	0.40 psi	0.40 psi	0.40 psi	0.40 psi	82.16 psi	0.00	OK
+1.20D+0.50S	1.07 p	si	1.07 psi	1.07 psi	1.07 psi	1.07 psi	82.16 psi	0.01	OK
+1.20D+1.60S	2.54 p	si	2.54 psi	2.54 psi	2.54 psi	2.54 psi	82.16 psi	0.03	OK
+1.20D+0.70S	1.34 p	si	1.34 psi	1.34 psi	1.34 psi	1.34 psi	82.16 psi	0.02	OK
+0.90D	0.30 p	si	0.30 psi	0.30 psi	0.30 psi	0.30 psi	82.16 psi	0.00	ОК
Two-Way "Punching" Shear			·			·		All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		2.0	5 psi	164.32ps	i	0.01245			ОК
+1.20D		1.7	5 psi	164.32ps	i	0.01067			OK
+1.20D+0.50S		4.7	3 psi	164.32ps	i	0.02876			OK
+1.20D+1.60S		11.2	6 psi	164.32ps	i	0.06855			OK
+1.20D+0.70S		5.9	2 psi	164.32ps	i	0.036			OK
+0.90D		1.3	2 psi	164.32ps	i	0.008006			OK

Strux Engineering

General Footing

LIC# : KW-06011804, Build:20.23.08.30

DESCRIPTION: C2

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2021

General Information

Material Properties			
f'c : Concrete 28 day strength		3.0 ksi	
fy : Rebar Yield	=	6	0.0 ksi
Ec : Concrete Elastic Modulus	=	3,12	2.0 ksi
Concrete Density	=	14	5.0 pcf
$_{m{0}}$ Values Flexure	=	0	.90
Shear	=	0.7	7 50
Analysis Settings			
Min Steel % Bending Reinf.		=	
Min Allow % Temp Reinf.		=	0.00090
Min. Overturning Safety Factor		=	1.0
Min. Sliding Safety Factor		=	1.0
Add Ftg Wt for Soil Pressure		:	Yes
Use ftg wt for stability, moments & s	hears	:	Yes
Add Pedestal Wt for Soil Pressure		:	No
Use Pedestal wt for stability, mom &	shear	:	No

	Allowable Soil Bearing	=	1.50 ksf
	Soil Density	=	110.0 pcf
	Increase Bearing By Footing Weight	=	No
	Soil Passive Resistance (for Sliding)	=	250.0 pcf
	Soil/Concrete Friction Coeff.	=	0.30
	Increases based on footing Depth		
	Footing base depth below soil surface	=	ft
	Allow press. increase per foot of depth	=	ksf
90 I.0:1	when footing base is below	=	ft
. <mark>0</mark> :1	Increases based on footing plan dimension	on	
es	Allowable pressure increase per foot of de	epth	
es	when max. length or width is greater than	=	ksf
No		=	ft

Dimensions

Width parallel to X-X Axis	=	3.0 ft
Length parallel to Z-Z Axis	=	3.0 ft
Footing Thickness	=	10.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	4.0 4
Bars parallel to Z-Z Axis			
Number of Bars	=		4.0
Reinforcing Bar Size	=	#	4
Bandwidth Distribution Ch	eck (ACI 15	.4.4.2)	
Direction Requiring Closer	Separation		
			n/a
# Bars required within zone	;		n/a
# Bars required on each sic	le of zone		n/a

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	1.980			9.750			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

Project File: 1013.24 McKercher Residence.ec6

(c) ENERCALC INC 1983-2023

General Footing

LIC# : KW-06011804, Build:20.23.08.30

Strux Engineering

Project File: 1013.24 McKercher Residence.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: C2

DESIGN SUMMARY

ESIGN SU	MMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9493	Soil Bearing	1.424 ksf	1.50 ksf	+D+S about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2779	Z Flexure (+X)	2.247 k-ft/ft	8.086 k-ft/ft	+1.20D+1.60S
PASS	0.2779	Z Flexure (-X)	2.247 k-ft/ft	8.086 k-ft/ft	+1.20D+1.60S
PASS	0.2779	X Flexure (+Z)	2.247 k-ft/ft	8.086 k-ft/ft	+1.20D+1.60S
PASS	0.2779	X Flexure (-Z)	2.247 k-ft/ft	8.086 k-ft/ft	+1.20D+1.60S
PASS	0.2692	1-way Shear (+X)	22.113 psi	82.158 psi	+1.20D+1.60S
PASS	0.2692	1-way Shear (-X)	22.113 psi	82.158 psi	+1.20D+1.60S
PASS	0.2692	1-way Shear (+Z)	22.113 psi	82.158 psi	+1.20D+1.60S
PASS	0.2692	1-way Shear (-Z)	22.113 psi	82.158 psi	+1.20D+1.60S
PASS	0.5358	2-way Punching	88.046 psi	164.317 psi	+1.20D+1.60S

Detailed Results

Soil Bearing								
Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loo	ation	Actual / Allow
Load Combination	Gross Allowable	(ir	ı)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.3408	0.3408	n/a	n/a	0.227
X-X, +D+S	1.50	n/a	0.0	1.424	1.424	n/a	n/a	0.949
X-X, +D+0.750S	1.50	n/a	0.0	1.153	1.153	n/a	n/a	0.769
X-X, +0.60D	1.50	n/a	0.0	0.2045	0.2045	n/a	n/a	0.136
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.3408	0.3408	0.227
Z-Z, +D+S	1.50	0.0	n/a	n/a	n/a	1.424	1.424	0.949
Z-Z, +D+0.750S	1.50	0.0	n/a	n/a	n/a	1.153	1.153	0.769
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.2045	0.2045	0.136

Overturning Stability

Overturning Moment	Resisting Moment	Stability Ratio	Status
			All units k
Sliding Force	Resisting Force	Stability Ratio	Status
	Overturning Moment Sliding Force	Overturning Moment Resisting Moment Sliding Force Resisting Force	Overturning Moment Resisting Moment Stability Ratio Sliding Force Resisting Force Stability Ratio

Flexure Axis & Load Combination	MU k-ft	Side	Surface	As Req'd in^2	Gvrn. As in^2	in ²	Phi*Mn k-ft	Status
X-X, +1.40D	0.3465	+Z	Bottom	0.1080	AsMin	0.2667	8.086	ок
X-X, +1.40D	0.3465	-Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +1.20D	0.2970	+Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +1.20D	0.2970	-Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +1.20D+0.50S	0.9064	+Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +1.20D+0.50S	0.9064	-Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +1.20D+1.60S	2.247	+Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +1.20D+1.60S	2.247	-Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +1.20D+0.70S	1.150	+Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +1.20D+0.70S	1.150	-Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +0.90D	0.2228	+Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
X-X, +0.90D	0.2228	-Z	Bottom	0.1080	AsMin	0.2667	8.086	OK
Z-Z, +1.40D	0.3465	-X	Bottom	0.1080	AsMin	0.2667	8.086	OK
Z-Z, +1.40D	0.3465	+X	Bottom	0.1080	AsMin	0.2667	8.086	OK
Z-Z, +1.20D	0.2970	-X	Bottom	0.1080	AsMin	0.2667	8.086	OK
Z-Z, +1.20D	0.2970	+X	Bottom	0.1080	AsMin	0.2667	8.086	OK
Z-Z, +1.20D+0.50S	0.9064	-X	Bottom	0.1080	AsMin	0.2667	8.086	OK

General Footing

LIC# : KW-06011804, Build:20.23.08.30

Strux Engineering

Project File: 1013.24 McKercher Residence.ec6 (c) ENERCALC INC 1983-2023

DESCRIPTION: C2

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. A in^2	s Actual in^2	As Pl	h i*Mn k-ft	Status
Z-Z, +1.20D+0.50S	0.9064	+X	Bottom	0.1080	AsMin	0.266	7	8.086	ок
Z-Z, +1.20D+1.60S	2.247	-X	Bottom	0.1080	AsMin	0.266	7	8.086	ОК
Z-Z, +1.20D+1.60S	2.247	+X	Bottom	0.1080	AsMin	0.266	7	8.086	ОК
Z-Z, +1.20D+0.70S	1.150	-X	Bottom	0.1080	AsMin	0.266	7	8.086	OK
Z-Z, +1.20D+0.70S	1.150	+X	Bottom	0.1080	AsMin	0.266	7	8.086	OK
Z-Z, +0.90D	0.2228	-X	Bottom	0.1080	AsMin	0.266	7	8.086	OK
Z-Z, +0.90D	0.2228	+X	Bottom	0.1080	AsMin	0.266	7	8.086	ОК
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	ı@-Z Vu	ı @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	3.41 p	si	3.41 psi	3.41 psi	3.41 psi	3.41 psi	82.16 p	si 0.04	OK
+1.20D	2.92 p	si	2.92 psi	2.92 psi	2.92 psi	2.92 psi	82.16 p	si 0.04	OK
+1.20D+0.50S	8.92 p	si	8.92 psi	8.92 psi	8.92 psi	8.92 psi	82.16 p	si 0.11	OK
+1.20D+1.60S	22.11 p	si	22.11 psi	22.11 psi	22.11 psi	22.11 psi	82.16 p	si 0.27	OK
+1.20D+0.70S	11.32 p	si	11.32 psi	11.32 psi	11.32 psi	11.32 psi	82.16 p	si 0.14	ОК
+0.90D	2.19 p	si	2.19 psi	2.19 psi	2.19 psi	2.19 psi	82.16 p	si 0.03	OK
Two-Way "Punching" Shear			·					All units	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn	1		Status
+1.40D		13.5	8 psi	164.32	psi	0.08263			OK
+1.20D		11.6	4 psi	164.32	psi	0.07082			ОК
+1.20D+0.50S		35.5	2 psi	164.32	psi	0.2161			ОК
+1.20D+1.60S		88.0	5 psi	164.32	psi	0.5358			OK
+1.20D+0.70S		45.0	7 psi	164.32	psi	0.2743			OK
+0.90D		8.7	3 psi	164.32	psi	0.05312			OK

McKercher Residence

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.1 Gravity Design

1.1.8 Joist Design

G:\Shared drives\Strux Engineering\Projects\2024\1013.24 421 McKercher Residence (ARCH)\Calc\Calc\1013.24 McKercher Residence Flagsheets

	I 1 (f+)	1.2 (ft)	Tuno	Uniform Load	Joict Docign	Hangor	
(KET FLAN)	LI (II)	L2 (IL)	p (psf)		Juist Design	nangei	
FI1 12.0		0.00	DL (FLOOR)	15	0 5" ፕሀ 110 @ 16" 0 ር		
I'JI	12.92	0.00	LL (FLOOR)	40	9.5 IJI II @ 10 U.C.		

MEMBER REPORT

FLOOR JOIST, FJ1 1 piece(s) 9 1/2" TJI ® 110 @ 16" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	487 @ 2 1/2"	1041 (2.25")	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	474 @ 3 1/2"	1220	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1569 @ 6' 9"	2500	Passed (63%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.200 @ 6' 9"	0.327	Passed (L/784)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.275 @ 6' 9"	0.654	Passed (L/570)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	44	40	Passed		

Member Length : 13' 3 1/2" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Load	ds to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.75"	135	360	495	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.75"	135	360	495	1 1/4" Rim Board
- Dim Depart is provided to entry all leads applied directly above it hypersize the member being designed							

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 11" o/c					
Bottom Edge (Lu)	13' 4" o/c					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 6"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
matthew Christian STRUX Engineering (512) 676-9004	
matt@struxengineering.com	

McKercher Residence

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.2 Lateral Design

G:\Shared drives\Strux Engineering\Projects\2024\1013.24 421 McKercher Residence (ARCH)\Calc\Calc\1013.24 McKercher Residence Flagsheets

McKercher Residence

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.2 Lateral Design

1.2.1 Wind Loading

G:\Shared drives\Strux Engineering\Projects\2024\1013.24 421 McKercher Residence (ARCH)\Calc\Calc\1013.24 McKercher Residence Flagsheets

ENVELOPE PROCEDURE

ASCE7-22 General Wind Inputs

Wind Directionality Factor, K₄

Velocity Pressure Exposure Coefficient, K,

STRUK ENGINEERING LLD Topographic Factor, K_{zt}

Ground Elevation Factor, K

Velocity Pressure, q_h

q_h = 15.68 psf

STRUX ENGINEERING LLD Internal Pressure Coefficient, GC_{pi}

$GC_{PI} = 0.18$ (+/-)(Enclosed Buildings)

Building Surface (Load Case 1)							
1	2	3	4	1E	2E	3E	4 E
0.4	-0.69	-0.37	-0.29	0.61	-1.07	-0.53	-0.43
0.53	-0.69	-0.48	-0.43	0.8	-1.07	-0.69	-0.64
0.56	0.21	-0.43	-0.37	0.69	0.27	-0.53	-0.48
0.56	0.56	-0.37	-0.37	0.69	0.69	-0.48	-0.48

		Build	ing Surfac	e (Load C	ase 2)						
1	2	3	4	5	6	1E	2 E	3E	4 E	5E	6 E
-0.45	-0.69	-0.37	-0.45	0.4	-0.29	-0.48	-1.07	-0.53	-0.48	0.61	-0.43

External Pressure Coefficients, GC_{DE}

LC	1	2	3	4	5	6	1E	2 E	3E	4 E	5E	6E
LC1	0.56	0.21	-0.43	-0.37	NA	NA	0.69	0.27	-0.53	-0.48	NA	NA
LC2	-0.45	-0.69	-0.37	-0.45	0.40	-0.29	-0.48	-1.07	-0.53	-0.48	0.61	-0.43

Determine End Zone Length (a)

STRUK ENGINEERING LLC Wind Pressures

LC	1	2	3	4	5	6	1E	2 E	3E	4E	5E	6E
LC1 (+)	9.86	5.20	-3.33	-2.53	NA	NA	11.59	6.00	-4.66	-4.00	NA	NA
LC1 (-)	5.06	0.40	-8.13	-7.33	NA	NA	6.80	1.20	-9.46	-8.79	NA	NA
LC2 (+)	-3.60	-6.80	-2.53	-3.60	7.73	-1.47	-4.00	-11.86	-4.66	-4.00	10.53	-3.33
LC2 (-)	-8.40	-11.59	-7.33	-8.40	2.93	-6.26	-8.79	-16.66	-9.46	-8.79	5.73	-8.13

Design Wind Pressures

Direction =	N/S	
Wall Length =	64.00	ft
Wall Pressure =	16.00	psf
Roof Pressure =	9.19	psf
Parapet Pressure =	33.31	psf
Direction =	W/E	
Wall Length =	49.50	ft
Wall Pressure =	16.00	psf
Roof Pressure =	9.38	psf
Darapat Dracaura -	22.24	

McKercher Residence

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.2 Lateral Design

1.2.2 Seismic Loading

G:\Shared drives\Strux Engineering\Projects\2024\1013.24 421 McKercher Residence (ARCH)\Calc\Calc\1013.24 McKercher Residence Flagsheets

Equivalent Lateral Force Procedure

Structure Type Selection

SFRS =	Light-frame walls sheathed with wood structural panels rated
	for shear resistance
Type =	All other structural systems

Seismic Data from ASCE7 Hazard Tool

RC =	II	
S ₁ =	0.14	
$S_{DS} =$	0.45	
$S_{D1} =$	0.25	
T _L =	6	S
SDC =	D	
h _n =	14.29	ft

(Risk Category)
(Spectral response acceleration parameter, 1s)
(Design spectral response acceleration parameter, short)
(Design spectral response acceleration parameter,1s)
(Long period transition period)
(Seismic Design Category)
(Structural height, taken at mid point of roof)

Outputs

I _e =	1
R =	6.5
Ω=	3
C _d =	4
C _t =	0.02
x =	0.75

(Importance factor)
(Response modification coefficient)
(Overstrength factor)
(Deflection amplification factor)
(Building period coefficient)
(Building period coefficient)

Seismic Response Coefficient, Cs

T =	0.147	s
k =	1.000	
$C_s =$	0.069	
$C_{s,min} =$	0.020	
$C_{s,min} =$	NA	
C _{s,max} =	0.262	
C _{s,max} =	NA	
C _{s,design} =	0.069	

(Approximate fundamental period of the building) (Exponent related to structure period) (Seismic response coefficient) (C_s lower bound) (C_s lower bound, for S1>0.6) (C_s upper bound, for T<T_L) (C_s upper bound, for T>T_L) (C_s design value)

Effective Seismic Weight

Level	Element	q (psf)	A (ft ²)	W _i (kip)
	Ext Wall	15	630	9.45
ROOF	Int Wall	5	1300	6.50
	Roof	18	2396	43.13
	Snow	35	2396	83.86
	NA	0	0	0.00
	NA	0	0	0.00
	Ext Wall	0	0	0.00
	Int Wall	0	0	0.00
NLΛ	Floor	0	0	0.00
NA	Deck	0	0	0.00
	NA	0	0	0.00
	NA	0	0	0.00
NA	Ext Wall	0	0	0.00
	Int Wall	0	0	0.00
	Floor	0	0	0.00
	Deck	0	0	0.00
	NA	0	0	0.00
	NA	0	0	0.00
	NA	0	0	0.00
	NA	0	0	0.00
NA	NA	0	0	0.00
INA	NA	0	0	0.00
	NA	0	0	0.00
	NA	0	0	0.00
	NA	0	0	0.00
	NA	0	0	0.00
ΝA	NA	0	0	0.00
INA	NA	0	0	0.00
	NA	0	0	0.00
	NA	0	0	0.00

(Seismic base shear)

Vertical Distribution of Seismic Forces, Fx

Level	W (k)	h (ft)	wh ^k (k*ft)	C _{vx}	F _x (k)
ROOF	142.94	14.29	2043	1.00	9.90
NA	0.00	0	0	0.00	0.00
NA	0.00	0	0	0.00	0.00
NA	0.00	0	0	0.00	0.00
NA	0.00	0	0	0.00	0.00

Diaphragm Design Forces, Fpx

Level	F _{px} (k)	F _{px,min} (k)	F _{px,max} (k)	Design F _{px}
ROOF	9.90	12.86	25.73	12.86
NA	0.00	0.00	0.00	0.00
NA	0.00	0.00	0.00	0.00
NA	0.00	0.00	0.00	0.00
NA	0.00	0.00	0.00	0.00

Seismic Pressures

Level	A (ft ²)	q _{DIA} (psf)	q _{sw} (psf)
ROOF	2396	5.37	4.13
NA	0	0.00	0.00
NA	0	0.00	0.00
NA	0	0.00	0.00
NA	0	0.00	0.00

Seismic Uniform Load Summary, N/S

Level	Diaph	D (ft)	q _{DIA} (psf)	w _{DIA} (plf)	q _{sw} (psf)	w _{sw} (plf)
ROOF	D1	26	5.37	140	4.13	107
ROOF	D2	24	5.37	129	4.13	99

Seismic Uniform Load Summary, E/W

Level	Diaph	D (ft)	q _{DIA} (psf)	w _{DIA} (plf)	q _{sw} (psf)	w _{sw} (plf)
ROOF	D3	50	5.37	268	4.13	207
ROOF	D4	14	5.37	75	4.13	58
ROOF	D5	24	5.37	129	4.13	99

26 26 **McKercher Residence**

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.2 Lateral Design

1.2.3 Diaphragm Design

G:\Shared drives\Strux Engineering\Projects\2024\1013.24 421 McKercher Residence (ARCH)\Calc\Calc\1013.24 McKercher Residence Flagsheets

Diaphragm Design Inputs

<u>Diaphragm = 1</u>

<u>(See Key Plan)</u>

- L2 = 64
 - ft (Main Span)
- ft (Cantilever Span) L3 = 0

WIND LOADING

Load Factor =	0.6	(ASD)			
Uniform Load Designations (WIND)					

			L1			
q (psf)	h ₁ (ft)	h ₂ (ft)	x ₁ (ft)	x ₂ (ft)	w ₁ (plf)	w ₂ (plf)
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

			L2			
q (psf)	h ₃ (ft)	h ₄ (ft)	x ₃ (ft)	x ₄ (ft)	w ₃ (plf)	w ₄ (plf)
9.19	10.5	10.5	0	64	96.495	96.495
16	4	4	0	64	64	64
0	0	0	0	0	0	0
0	0	0	0	0	0	0

	L3											
q (psf)	h ₅ (ft)	h ₆ (ft)	x ₅ (ft)	x ₆ (ft)	w ₅ (plf)	w ₆ (plf)						
0	0	0	0	0	0	0						
0	0	0	0	0	0	0						
0	0	0	0	0	0	0						
0	0	0	0	0	0	0						

Point Load Designations (WIND)

	L1	L	2	L3		
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Uniform Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	1852.704	1852.7	0
0	1228.8	1228.8	0
0	0	0	0
0	0	0	0

$R1_{WIND}$ TOTAL = 3081.5	lbf	
$R2_{WIND}$ TOTAL = 3081.5	lbf	

Point Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

SEISMIC LOADING

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

L1				L2				L3				
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)	
0.00	0	0.00	0	140.00	0	140.00	64	0.00	0	0.00	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	

Point Load Designations (SEISMIC)

l	L 1	L	2	L3		
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	3136	3136	0
0	0	0	0
0	0	0	0
0	0	0	0

R1 _{SEISMIC} TOTAL = 3136	lbf
$R2_{SEISMIC}$ TOTAL = 3136	lbf

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design

CHECK WIND: OK CHECK SEISMIC: OK

Wood Requirement: 1) Nominal support to be 2x minimum.

- 2) Sheathing must be applied with long dimension perpendicular to supports.
- 3) Panel ends to be staggered 2'-0" from adjacent panels.

Chord Design

Table 4.2C Nominal Unit Shear Values for Sheathed Wood-Frame Diaphragms

		Minimum Nail	Minimum	Minimum Nominal Width of	6 in. Nail Spacing at diaphragm boundaries and supported panel edges						
Sheathing Grade	Common Nail Size ⁵ Length (in.) x Shank	Bearing Length in	Nominal	ominal Nailed Face at		Case 1		Cases 2,3,4,5,6			
	diameter (in.) x Head diameter (in.)	Framing Member, &	Panel Thickness (in.)	Edges and Boundaries	vn (plf)	G. G. (kips/in)		va (plf)	G (kip	i. s/în)	
		((in.)		OSB	PLY		OSB	PLY	
	6d	1-1/4	5/16	2	460	9.0	7.0	350	6.0	4.5	
	(2 x 0.113 x 0.266)	1-124	0.10	3	520	7.0	6.0	390	4.5	4.0	
Structural I	8d	1.3/8	3/8	2	670	8.5	7.0	505	6.0	4.5	
Subcurari	(2-1/2 x 0.131 x 0.281)	1-5/6		3	740	7.5	6.0	560	5.0	4.0	
	10d	1-1/2	15/32	2	800	14	10	600	9.5	7.0	
	(3 x 0.148 x 0.312)			3	895	12	9.0	670	8.0	6.0	
	6d (2 x 0.113 x 0.266)	1-1/4	5/16	2	420	9.0	6.5	310	6.0	4.0	
				3	475	7.0	5.5	350	5.0	3.5	
				2	460	7.5	5.5	350	5.0	4.0	
			3.0	3	520	6.0	4.5	390	4.0	3.0	
			3/8	2	600	9.0	6.5	450	6.0	4.5	
			3.0	3	670	7.5	5.5	505	5.0	3.5	
Sheathing and	8d	1-3/8	7/16	2	645	8.5	6.0	475	5.5	4.0	
Single-Floor	(2-1/2 x 0.131 x 0.281)	1-0.0	1710	3	715	7.0	5.5	530	4.5	3.5	
			15/32	2	670	7.5	5.5	505	5.0	4.0	
			1.50.52	3	740	6.5	5.0	560	4.0	3.5	
			15/32	2	715	15	9.0	630	10	6.0	
	10d	1.1/2	10/02	3	810	12	8.0	600	8.0	5.5	
	(3 x 0.148 x 0.312)	1-1/2	19/32	2	800	13	8.5	600	8.5	5.5	
			10/32	3	895	10	7.5	670	7.0	5.0	

Unblocked Wood Structural Panel Diaphragms^{1,2,3,4,6}

 Nominal unit shear capacities shall be adjusted in accordance with 4.1.4 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.2.7. For specific requirements, see 4.2.8.1 for wood structural panel disphragma. See Appendix A for common nail dimensions.

 For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3.A). The Specific Gravity Adjustment Factor shall not be greater than 1.

 Apparent shear stiffness values, G_a, are based on nail alig in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for disphragma constructed with either OSB or 3-ply plywood panels. When 4-ply, or 5-ply plywood panels or composite ganels are used, G, values shall be permitted to be increased by 1.2.

4. Where moisture content of the framing is greater than 19% at time of fabrication, G, values shall be multiplied by 0.5.

5. Tabulated nominal unit shear capacities are applicable for carbon steel smooth shark nails of the specified type and size.

Disphragm resistance depends on the direction of continuous adjoining panel edges with respect to the loading direction and direction of framing members, and is independent of the panel orientation.

Seismic Loads to Shear Walls

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

L1					L	.2		L3			
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)
0.00	0	0.00	0	99.00	0	99.00	64	0.00	0	0.00	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Point Load Designations (SEISMIC)

	L1 L2 L3		L2		3
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	2217.6	2217.6	0
0	0	0	0
0	0	0	0
0	0	0	0

$R1_{SEISMIC}$ TOTAL = 2217.6	lbf	
$R2_{SEISMIC}$ TOTAL = 2217.6	lbf	

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design Inputs

<u>Diaphragm = 2</u>

<u>(See Key Plan)</u>

L2 = 24 ft (Main Span)

L3 = 0 ft (Cantilever Span)

WIND LOADING

Load Factor =	0.6	(ASD)
Uniform Load Design	nations (V	VIND)

			L1			
q (psf)	h ₁ (ft)	h ₂ (ft)	x ₁ (ft)	x ₂ (ft)	w ₁ (plf)	w ₂ (plf)
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

	L2					
q (psf)	h ₃ (ft)	h ₄ (ft)	x ₃ (ft)	x ₄ (ft)	w ₃ (plf)	w ₄ (plf)
16	5.25	5.25	0	24	84	84
16	4	4	0	24	64	64
0	0	0	0	0	0	0
0	0	0	0	0	0	0

L3						
q (psf)	h ₅ (ft)	h ₆ (ft)	x ₅ (ft)	x ₆ (ft)	w ₅ (plf)	w ₆ (plf)
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Point Load Designations (WIND)

	L1	L2		L	3
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Uniform Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	604.8	604.8	0
0	460.8	460.8	0
0	0	0	0
0	0	0	0

R1_{WIND} TOTAL = 1065.6	lbf	
$R2_{WIND}$ TOTAL = 1065.6	lbf	

Point Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

SEISMIC LOADING

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

L1			L2			L3					
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)
0.00	0	0.00	0	129.00	0	129.00	24	0.00	0	0.00	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Point Load Designations (SEISMIC)

L1		L	2	L3		
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	1083.6	1083.6	0
0	0	0	0
0	0	0	0
0	0	0	0

$R1_{SEISMIC}$ TOTAL = 1083.6	lbf	
R2 _{SEISMIC} TOTAL = 1083.6	lbf	

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design

CHECK WIND: OK CHECK SEISMIC: OK

Wood Requirement: 1) Nominal support to be 2x minimum.

- 2) Sheathing must be applied with long dimension perpendicular to supports.
- 3) Panel ends to be staggered 2'-0" from adjacent panels.

Chord Design

Table 4.2C Nominal Unit Shear Values for Sheathed Wood-Frame Diaphragms

		Minimum Nail	Minimum	Minimum Nominal Width of	6 in. Nail Spacing at diaphragm boundaries and supported panel edges						
Sheathing	Common Nail Size ⁵ Length (in.) x Shank	Bearing Length in	Nominal	Nailed Face at		Case 1		Cases 2,3,4,5,6			
Grade	diameter (in.) x Head diameter (in.)	Framing Member, & (in.)	Panel Thickness (in.)	Edges and Boundaries	vn (plf)	G. (kips/in)		Va (plf)	Ga (kips/în)		
		((in.)		OSB	PLY		OSB	PLY	
	6d	1-1/4	5/16	2	460	9.0	7.0	350	6.0	4.5	
	(2 x 0.113 x 0.266)	1-124	0.10	3	520	7.0	6.0	390	4.5	4.0	
Structural I 8d (2-1/2 x 0.131 x 0.281) 10d (3 x 0.148 x 0.312)	8d	1.3/8	3/8	2	670	8.5	7.0	505	6.0	4.5	
	(2-1/2 x 0.131 x 0.281)	1-3/6	3/6	3	740	7.5	6.0	560	5.0	4.0	
	10d	1.1/2	15/32	2	800	14	10	600	9.5	7.0	
	1-1/2	TOPOL	3	895	12	9.0	670	8.0	6.0		
			5/16	2	420	9.0	6.5	310	6.0	4.0	
	6d (2 x 0.113 x 0.266)	1-1/4	3/8	3	475	7.0	5.5	350	5.0	3.5	
				2	460	7.5	5.5	350	5.0	4.0	
				3	520	6.0	4.5	390	4.0	3.0	
			2/9	2	600	9.0	6.5	450	6.0	4.5	
			3.0	3	670	7.5	5.5	505	5.0	3.5	
Sheathing and	8d	1-3/8	7/16	2	645	8.5	6.0	475	5.5	4.0	
Single-Floor	(2-1/2 x 0.131 x 0.281)	1-010	1710	3	715	7.0	5.5	530	4.5	3.5	
			15/32	2	670	7.5	5.5	505	5.0	4.0	
			1.50.52	3	740	6.5	5.0	560	4.0	3.5	
			15/32	2	715	15	9.0	630	10	6.0	
	10d	1.1/2	10/02	3	810	12	8.0	600	8.0	5.5	
	(3 x 0.148 x 0.312)	1-1/2	19/32	2	800	13	8.5	600	8.5	5.5	
			13/32	3	895	10	7.5	670	7.0	5.0	

Unblocked Wood Structural Panel Diaphragms^{1,2,3,4,6}

 Nominal unit shear capacities shall be adjusted in accordance with 4.1.4 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.2.7. For specific requirements, see 4.2.8.1 for wood structural panel disphragma. See Appendix A for common nail dimensions.

 For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3.A). The Specific Gravity Adjustment Factor shall not be greater than 1.

 Apparent shear stiffness values, G_a, are based on nail alig in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for disphragma constructed with either OSB or 3-ply plywood panels. When 4-ply, or 5-ply plywood panels or composite ganels are used, G, values shall be permitted to be increased by 1.2.

4. Where moisture content of the framing is greater than 19% at time of fabrication, G, values shall be multiplied by 0.5.

5. Tabulated nominal unit shear capacities are applicable for carbon steel smooth shark nails of the specified type and size.

Disphragm resistance depends on the direction of continuous adjoining panel edges with respect to the loading direction and direction of framing members, and is independent of the panel orientation.

Seismic Loads to Shear Walls

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

L1			L2			L3					
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)
0.00	0	0.00	0	99.00	0	99.00	24	0.00	0	0.00	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Point Load Designations (SEISMIC)

L1		L	2	L3		
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	831.6	831.6	0
0	0	0	0
0	0	0	0
0	0	0	0

$R1_{SEISMIC}$ TOTAL = 831.6	lbf	
R2 _{SEISMIC} TOTAL = 831.6	lbf	

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design Inputs

<u>Diaphragm = 3</u>

<u>(See Key Plan)</u>

L1 =	0	ft (Cantilever Span)
L2 =	26	ft (Main Span)

ft (Main Span)

ft (Cantilever Span) L3 = 0

WIND LOADING

Load Factor =	0.6	(ASD)			
Uniform Load Designations (WIND)					

			L1			
q (psf)	h ₁ (ft)	h ₂ (ft)	x ₁ (ft)	x ₂ (ft)	w ₁ (plf)	w ₂ (plf)
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

			L2			
q (psf)	h ₃ (ft)	h ₄ (ft)	x ₃ (ft)	x ₄ (ft)	w ₃ (plf)	w ₄ (plf)
16	5.5	5.5	0	26	88	88
16	4	4	0	26	64	64
0	0	0	0	0	0	0
0	0	0	0	0	0	0

			L3			
q (psf)	h ₅ (ft)	h ₆ (ft)	x ₅ (ft)	x ₆ (ft)	w ₅ (plf)	w ₆ (plf)
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Point Load Designations (WIND)

	L1	L2		L2 L3		3
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Uniform Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	686.4	686.4	0
0	499.2	499.2	0
0	0	0	0
0	0	0	0

R1_{WIND} TOTAL = 1185.6	lbf
$R2_{WIND}$ TOTAL = 1185.6	lbf

Point Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

SEISMIC LOADING

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

	L	1		L2			L2 L3				
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)
0.00	0	0.00	0	268.00	0	268.00	26	0.00	0	0.00	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Point Load Designations (SEISMIC)

l	L 1	L2		L3	
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	2438.8	2438.8	0
0	0	0	0
0	0	0	0
0	0	0	0

R1 _{SEISMIC} TOTAL = 2438.8	lbf
R2 _{SEISMIC} TOTAL = 2438.8	lbf

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design

Diaphragm =	3	(See Key F	Plan)
Width =	26	ft	
Depth =	50	ft	
A/R =	0.52	<=3.5; OK	
r1 _{WIND} =	23.712	plf	(Diaphragm Shear @ Support 1) (WIND)
r2 _{WIND} =	23.712	plf	(Diaphragm Shear @ Support 2) (WIND)
$r1_{SEISMIC} =$	48.776	plf	(Diaphragm Shear @ Support 1) (SEISMIC)
r2 _{SEISMIC} =	48.776	plf	(Diaphragm Shear @ Support 2) (SEISMIC)
Roof/Flr Sheathing (min):	19/32" 0	SB w/ 10d	@ 12" O.C. (F.N.) & 10d @ 6" O.C. (E.N.) (UNBLOCKED)
$v_{\text{Diaghram}(\text{WIND})} =$	400		plf
$v_{\text{Diaghram(SEISMIC)}} =$	285.714		plf

CHECK WIND: OK CHECK SEISMIC: OK

Wood Requirement: 1) Nominal support to be 2x minimum.

- 2) Sheathing must be applied with long dimension perpendicular to supports.
- 3) Panel ends to be staggered 2'-0" from adjacent panels.

Chord Design

Table 4.2C Nominal Unit Shear Values for Sheathed Wood-Frame Diaphragms

		Minimum Nail	Minimum	Minimum Minimum Nominal Width of		6 in. Nail Spacing at diaphragm boundaries and supported panel edges					
Sheathing	Common Nail Size ⁵ Length (in.) x Shank	Bearing Length in	Nominal	Nailed Face at	Case 1			Cases 2,3,4,5,6			
Grade	diameter (in.) x Head diameter (in.)	Framing Member, & (in.)	Panel Thickness (in.)	Panel Adjoining Panel Thickness Edges and (in.) Boundaries		(kip	G. (kips/in)		G. (kips/in)		
		((in.)		OSB	PLY		OSB	PLY	
	6d	1-1/4	5/16	2	460	9.0	7.0	350	6.0	4.5	
	(2 x 0.113 x 0.266)	1-124	0.10	3	520	7.0	6.0	390	4.5	4.0	
Structural I	setural I 8d	1.3/8	3/8	2	670	8.5	7.0	505	6.0	4.5	
(2-1/2 x 0	(2-1/2 x 0.131 x 0.281)	1-5/6	3/6	3	740	7.5	6.0	560	5.0	4.0	
	10d	1.1/2	15/32	2	800	14	10	600	9.5	7.0	
	(3 x 0.148 x 0.312)	1-1/2		3	895	12	9.0	670	8.0	6.0	
	6d (2 x 0.113 x 0.266)	1-1/4	5/16 3/8	2	420	9.0	6.5	310	6.0	4.0	
				3	475	7.0	5.5	350	5.0	3.5	
				2	460	7.5	5.5	350	5.0	4.0	
				3	520	6.0	4.5	390	4.0	3.0	
			2/0	2	600	9.0	6.5	450	6.0	4.5	
			3/6	3	670	7.5	5.5	505	5.0	3.5	
Sheathing and	8d	1.3/8	7/16	2	645	8.5	6.0	475	5.5	4.0	
Single-Floor	(2-1/2 x 0.131 x 0.281)	1-3/0	7710	3	715	7.0	5.5	530	4.5	3.5	
			15/32	2	670	7.5	5.5	605	5.0	4.0	
			13/32	3	740	6.5	5.0	560	4.0	3.5	
			15/32	2	715	15	9.0	630	10	6.0	
	10d	1.1/2	13/32	3	810	12	8.0	600	8.0	5.5	
	(3 x 0.148 x 0.312)	1-1/2	10/32	2	800	13	8.5	600	8.5	5.5	
			19/32	3	895	10	7.5	670	7.0	5.0	

Unblocked Wood Structural Panel Diaphragms^{1,2,3,4,6}

 Nominal unit shear capacities shall be adjusted in accordance with 4.1.4 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.2.7. For specific requirements, see 4.2.8.1 for wood structural panel disphragma. See Appendix A for common nail dimensions.

 For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3.A). The Specific Gravity Adjustment Factor shall not be greater than 1.

 Apparent shear stiffness values, G_a, are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel attiffness values for disphragma constructed with either OSB or 3-ply plywood panels. When 4-ply, or 5-ply plywood panels or composite panels are used, G, values shall be permitted to be increased by 1.2.

4. Where moisture content of the framing is greater than 19% at time of fabrication, Ge values shall be multiplied by 0.5.

5. Tabulated nominal unit shear capacities are applicable for carbon steel smooth shark nails of the specified type and size.

Disphragm resistance depends on the direction of continuous adjoining panel edges with respect to the loading direction and direction of framing members, and is independent of the panel orientation.

Seismic Loads to Shear Walls

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

L1			L2			L3					
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)
0.00	0	0.00	0	207.00	0	207.00	26	0.00	0	0.00	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Point Load Designations (SEISMIC)

	L1	L	2	L3	
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	1883.7	1883.7	0
0	0	0	0
0	0	0	0
0	0	0	0

$R1_{SEISMIC}$ TOTAL = 1883.7	lbf
$R2_{SEISMIC}$ TOTAL = 1883.7	lbf

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design Inputs

<u>Diaphragm = 4</u>

<u>(See Key Plan)</u>

- L2 = 26
 - ft (Main Span)
- ft (Cantilever Span) L3 = 0

WIND LOADING

Load Factor =	0.6	(ASD)
Uniform Load Design	nations (V	<u>VIND)</u>

			L1			
q (psf)	h ₁ (ft)	h ₂ (ft)	x ₁ (ft)	x ₂ (ft)	w ₁ (plf)	w ₂ (plf)
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

			L2			
q (psf)	h ₃ (ft)	h ₄ (ft)	x ₃ (ft)	x ₄ (ft)	w ₃ (plf)	w ₄ (plf)
16	5.5	5.5	0	26	88	88
16	4	4	0	26	64	64
0	0	0	0	0	0	0
0	0	0	0	0	0	0

			L3			
q (psf)	h ₅ (ft)	h ₆ (ft)	x ₅ (ft)	x ₆ (ft)	w ₅ (plf)	w ₆ (plf)
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Point Load Designations (WIND)

	L1	L	2	L3		
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf) x ₈ (ft)		P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Uniform Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	686.4	686.4	0
0	499.2	499.2	0
0	0	0	0
0	0	0	0

R1_{WIND} TOTAL = 1185.6	lbf	
$R2_{WIND}$ TOTAL = 1185.6	lbf	

Point Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

SEISMIC LOADING

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

L1				L2				L3			
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)
0.00	0	0.00	0	75.00	0	75.00	26	0.00	0	0.00	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Point Load Designations (SEISMIC)

l	L1	L	2	L3		
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	682.5	682.5	0
0	0	0	0
0	0	0	0
0	0	0	0

R1 _{SEISMIC} TOTAL = 682.5	lbf
$R2_{SEISMIC}$ TOTAL = 682.5	lbf

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design

CHECK WIND: OK CHECK SEISMIC: OK

Wood Requirement: 1) Nominal support to be 2x minimum.

- 2) Sheathing must be applied with long dimension perpendicular to supports.
- 3) Panel ends to be staggered 2'-0" from adjacent panels.

Chord Design

Table 4.2C Nominal Unit Shear Values for Sheathed Wood-Frame Diaphragms

		Minimum Nail	Minimum	Minimum Nominal Width of	6 in. Nail Spacing at diaphragm boundaries and supported panel edges								
Sheathing Grade	Common Nail Size ⁵ Length (in.) x Shank	Bearing Length in	Nominal	Nailed Face at		Case 1		Cases 2,3,4,5,6					
	diameter (in.) x Head diameter (in.)	Framing Member, & Th	Panel Thickness (in.)	Thickness (in.)	Thickness (in.)	Thickness (in.)	Thickness Edges and (in.) Boundaries	v _n G _a (plf) (kips/in)		va (plf)	G (kip	Ga (kips/in)	
		((in.)		OSB	PLY		OSB	PLY			
	6d	1-1/4	5/16	2	460	9.0	7.0	350	6.0	4.5			
	(2 x 0.113 x 0.266)	1-124	0.10	3	520	7.0	6.0	390	4.5	4.0			
Structural I	8d (2-1/2 x 0.131 x 0.281)	1.3/8	3/8	2	670	8.5	7.0	505	6.0	4.5			
-		1-0/0		3	740	7.5	6.0	560	5.0	4.0			
	10d	1.1/2	15/32	2	800	14	10	600	9.5	7.0			
	(3 x 0.148 x 0.312)	1-174		3	895	12	9.0	670	8.0	6.0			
	6d (2 x 0.113 x 0.266)		5/16	2	420	9.0	6.5	310	6.0	4.0			
		1-1/4	3/8	3	475	7.0	5.5	350	5.0	3.5			
				2	460	7.5	5.5	350	5.0	4.0			
			3.0	3	520	6.0	4.5	390	4.0	3.0			
			3/8	2	600	9.0	6.5	450	6.0	4.5			
			3.0	3	670	7.5	5.5	505	5.0	3.5			
Sheathing and	8d	1-3/8	7/16	2	645	8.5	6.0	475	5.5	4.0			
Single-Floor	(2-1/2 x 0.131 x 0.281)	1-010	1710	3	715	7.0	5.5	530	4.5	3.5			
			15/32	2	670	7.5	5.5	505	5.0	4.0			
-			1.50.52	3	740	6.5	5.0	560	4.0	3.5			
			15/32	2	715	15	9.0	630	10	6.0			
	10d	1.1/2	10/02	3	810	12	8.0	600	8.0	5.5			
	(3 x 0.148 x 0.312)	1-1/2	19/32	2	800	13	8.5	600	8.5	5.5			
			19/32	3	895	10	7.5	670	7.0	5.0			

Unblocked Wood Structural Panel Diaphragms^{1,2,3,4,6}

 Nominal unit shear capacities shall be adjusted in accordance with 4.1.4 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.2.7. For specific requirements, see 4.2.8.1 for wood structural panel disphragma. See Appendix A for common nail dimensions.

 For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3.A). The Specific Gravity Adjustment Factor shall not be greater than 1.

 Apparent shear stiffness values, G_a, are based on nail alig in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for disphragma constructed with either OSB or 3-ply plywood panels. When 4-ply, or 5-ply plywood panels or composite ganels are used, G, values shall be permitted to be increased by 1.2.

4. Where moisture content of the framing is greater than 19% at time of fabrication, G, values shall be multiplied by 0.5.

5. Tabulated nominal unit shear capacities are applicable for carbon steel smooth shark nails of the specified type and size.

Disphragm resistance depends on the direction of continuous adjoining panel edges with respect to the loading direction and direction of framing members, and is independent of the panel orientation.

Seismic Loads to Shear Walls

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

L1					L	L2				L3			
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)		
0.00	0	0.00	0	58.00	0	58.00	26	0.00	0	0.00	0		
0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0		

Point Load Designations (SEISMIC)

l	L 1	L	2	L3		
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	527.8	527.8	0
0	0	0	0
0	0	0	0
0	0	0	0

$R1_{SEISMIC}$ TOTAL = 527.8	lbf	
$R2_{SEISMIC}$ TOTAL = 527.8	lbf	

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design Inputs

<u>Diaphragm = 6</u>

<u>(See Key Plan)</u>

L2 = 24

ft (Main Span)

ft (Cantilever Span) L3 = 0

WIND LOADING

Load Factor =	0.6	(ASD)					
Uniform Load Designations (WIND)							

L1								
q (psf)	h ₁ (ft)	h ₂ (ft)	x ₁ (ft)	x ₂ (ft)	w ₁ (plf)	w ₂ (plf)		
0	0	0	0	0	0	0		
0	0	0	0	0	0	0		
0	0	0	0	0	0	0		
0	0	0	0	0	0	0		

L2								
q (psf)	h ₃ (ft)	h ₄ (ft)	x ₃ (ft)	x ₄ (ft)	w ₃ (plf)	w ₄ (plf)		
9.2	10.5	10.5	0	24	96.6	96.6		
16	4	4	0	24	64	64		
0	0	0	0	0	0	0		
0	0	0	0	0	0	0		

L3								
q (psf)	h ₅ (ft)	h ₆ (ft)	x ₅ (ft)	x ₆ (ft)	w ₅ (plf)	w ₆ (plf)		
0	0	0	0	0	0	0		
0	0	0	0	0	0	0		
0	0	0	0	0	0	0		
0	0	0	0	0	0	0		

Point Load Designations (WIND)

L1		L	2	L3		
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Uniform Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	695.52	695.52	0
0	460.8	460.8	0
0	0	0	0
0	0	0	0

R1_{WIND} TOTAL = 1156.32	lbf
R2_{WIND} TOTAL = 1156.32	lbf

Point Load Reactions (WIND)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

SEISMIC LOADING

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

L1			L2			L3					
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)
0.00	0	0.00	0	129.00	0	129.00	24	0.00	0	0.00	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Point Load Designations (SEISMIC)

l	L 1	L2		.2 L3	
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	1083.6	1083.6	0
0	0	0	0
0	0	0	0
0	0	0	0

$R1_{SEISMIC}$ TOTAL = 1083.6	lbf	
R2 _{SEISMIC} TOTAL = 1083.6	lbf	

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Diaphragm Design

CHECK WIND: OK CHECK SEISMIC: OK

Wood Requirement: 1) Nominal support to be 2x minimum.

- 2) Sheathing must be applied with long dimension perpendicular to supports.
- 3) Panel ends to be staggered 2'-0" from adjacent panels.

Chord Design

Table 4.2C Nominal Unit Shear Values for Sheathed Wood-Frame Diaphragms

		Minimum Nail	Minimum	Minimum Minimum	6 in. Nail Spacing at diaphragm boundaries and supported panel edges								
Sheathing	Common Nail Size ⁵ Length (in.) x Shank	Bearing Length in	Nominal	Nailed Face at	Case 1			Cases 2,3,4,5,6					
Grade	diameter (in.) x Head diameter (in.)	Framing Member, & (in.)	Thickness E (in.) B	Edges and Boundaries	vn (plf)	(kip). s/in)	va (plf)	G (kip	i. s/în)			
		((in.)		OSB	PLY		OSB	PLY			
	6d	1-1/4	5/16	2	460	9.0	7.0	350	6.0	4.5			
	(2 x 0.113 x 0.266)	1-124	0.10	3	520	7.0	6.0	390	4.5	4.0			
Structural I	8d	1.3/8	3/8	2	670	8.5	7.0	505	6.0	4.5			
Subcurari	(2-1/2 x 0.131 x 0.281)	1-5/6	3/6	3	740	7.5	6.0	560	5.0	4.0			
	10d	1.4/2	2 15/32	2	800	14	10	600	9.5	7.0			
	(3 x 0.148 x 0.312)	1-1/2		3	895	12	9.0	670	8.0	6.0			
		1-1/4	5/16	2	420	9.0	6.5	310	6.0	4.0			
	6d		0.10	3	475	7.0	5.5	350	5.0	3.5			
	(2 x 0.113 x 0.266)		3/8	2	460	7.5	5.5	350	5.0	4.0			
								3	520	6.0	4.5	390	4.0
			3/8	2	600	9.0	6.5	450	6.0	4.5			
			3/6	3	670	7.5	5.5	505	5.0	3.5			
Sheathing and	8d	1.3/8	7/16	2	645	8.5	6.0	475	5.5	4.0			
Single-Floor	(2-1/2 x 0.131 x 0.281)	1-3/0	7710	3	715	7.0	5.5	530	4.5	3.5			
			15/32	2	670	7.5	5.5	605	5.0	4.0			
		13/32	3	740	6.5	5.0	560	4.0	3.5				
			15/32	2	715	15	9.0	630	10	6.0			
	10d	1.1/2	13/32	3	810	12	8.0	600	8.0	5.5			
	(3 x 0.148 x 0.312)	1-1/2	10/32	2	800	13	8.5	600	8.5	5.5			
			10/02	3	895	10	7.5	670	7.0	5.0			

Unblocked Wood Structural Panel Diaphragms^{1,2,3,4,6}

 Nominal unit shear capacities shall be adjusted in accordance with 4.1.4 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.2.7. For specific requirements, see 4.2.8.1 for wood structural panel disphragma. See Appendix A for common nail dimensions.

 For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3.A). The Specific Gravity Adjustment Factor shall not be greater than 1.

 Apparent shear stiffness values, G_a, are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel attiffness values for disphragma constructed with either OSB or 3-ply plywood panels. When 4-ply, or 5-ply plywood panels or composite panels are used, G, values shall be permitted to be increased by 1.2.

4. Where moisture content of the framing is greater than 19% at time of fabrication, Ge values shall be multiplied by 0.5.

5. Tabulated nominal unit shear capacities are applicable for carbon steel smooth shark nails of the specified type and size.

Disphragm resistance depends on the direction of continuous adjoining panel edges with respect to the loading direction and direction of framing members, and is independent of the panel orientation.

Seismic Loads to Shear Walls

Load Factor = 0.7 (ASD) Uniform Load Designations (SEISMIC)

	L	1		L2				I	L3		
w ₁ (plf)	x ₁ (ft)	w ₂ (plf)	x ₂ (ft)	w ₃ (plf)	x ₃ (ft)	w ₄ (plf)	x ₄ (ft)	w ₅ (plf)	x ₅ (ft)	w ₆ (plf)	x ₆ (ft)
0.00	0	0.00	0	99.00	0	99.00	24	0.00	0	0.00	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Point Load Designations (SEISMIC)

	L1	L2		L3	
P ₁ (lbf)	x ₇ (ft)	P ₂ (lbf)	x ₈ (ft)	P ₃ (lbf)	x ₉ (ft)
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Reactions (SEISMIC)

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	831.6	831.6	0
0	0	0	0
0	0	0	0
0	0	0	0

$R1_{SEISMIC}$ TOTAL = 831.6	lbf	
R2 _{SEISMIC} TOTAL = 831.6	lbf	

R1 (L1)	R1 (L2)	R2 (L2)	R2 (L3)
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

WIND: SUMMARY OF WALL LINE FORCES

<u>Diaphragm</u>	<u>R1</u>	<u>R2</u>
1	3082	3082
2	1066	1066
3	1186	1186
4	1186	1186
5	1156	1156

SEISMIC: SUMMARY OF WALL LINE FORCES

<u>Diaphragm</u>	<u>R1</u>	<u>R2</u>
1	2218	2218
2	831.6	831.6
3	1884	1884
4	527.8	527.8
5	831.6	831.6

WALL LINE FORCE SUMMARY

Wall Line		Diaphragm							F _{wind} (lb)	F _{seismic} (lb)
1	1	R1							3081.5	2217.6
2	1	R2							3081.5	2217.6
3	2	R2							1065.6	831.6
4	2	R1							1065.6	831.6
А	3	R2	4	R2					2371.2	2411.5
В	3	R1	5	R2					2341.9	2715.3
С	4	R2							1185.6	527.8
D	4	R1							1185.6	527.8
Е	5	R1							1156.3	831.6

NOTE: Lateral loads are given for each wall line. Loads will be combined in the shear wall analysis.

McKercher Residence

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.2 Lateral Design

1.2.4 Shear Wall Key Plans

G:\Shared drives\Strux Engineering\Projects\2024\1013.24 421 McKercher Residence (ARCH)\Calc\Calc\1013.24 McKercher Residence Flagsheets

McKercher Residence

CLIENT: ARCH Community Housing Trust STRUX Project Number: 1013.24

MCKERCHER RESIDENCE

1.2 Lateral Design

1.2.5 Shear Wall Design

G:\Shared drives\Strux Engineering\Projects\2024\1013.24 421 McKercher Residence (ARCH)\Calc\Calc\1013.24 McKercher Residence Flagsheets

Segmented Shear Wall

Story Shears								
Load	V _w (lb)	V _{eq} (lb)	y (ft)	M _w (lb*ft)	M _{eq} (lb*ft)			
1	3081	2217	8	24648	17736			
2	0	0	0	0	0			
3	0	0	0	0	0			
Totals	3081	2217	NA	24648	17736			

Chord Selection						
Chord A (ft ²) E (ksi)						
(2) 2x6 DF-L #2 16.5 1600						

Holdown Selection								
HD	HD Configuration Δ_a (in) T_w (lb) T_{eq} (lb)							
STHD STHD10, 6" Stem Wall, Midwall 0.146 2910 2550								

Sheathing Selection								
Sheathing Type	Sheathing Type v _w (plf) v _{eq} (plf) G _a (k/in) AR (MAX) C _d							
7/16" OSB w/ 8d @ 4/12" O.C. (B) 532.5 380.4 22 3.5 4								

	Shear Wall Deflection Limits							
RC	RC Structure Type h [*] Δ _a (in) Exterior Wall Finish H/							
П	II All other structures 0.02 Interior gypsum board 180							

	SW Geometry & Distribution Factors									
SW#	L (ft)	H _{eff} (ft)	A/R	WSP	1/k	Dist (%)				
1	8	8	1.00	1.00	1.95	1.00				
2	0	0	NA	NA	NA	NA				
3	0	0	NA	NA	NA	NA				
4	0	0	NA	NA	NA	NA				
5	0	0	NA	NA	NA	NA				
6	0	0	NA	NA	NA	NA				
	8				1.95					

Sheathing Capacity Calculations							
Wind			Seismic				
V _{max} (lb)	b) V _{all} (lb) Unity		V _{max} (lb) V _{all} (lb)		Unity		
385	533	0.72	277	380	0.73		
NA	NA	NA	NA	NA	NA		
NA	NA	NA	NA	NA	NA		
NA	NA	NA	NA	NA	NA		
NA	NA	NA	NA	NA	NA		
NA	NA	NA	NA	NA	NA		

STRUX

	Dead Loads Acting on Shear Wall Segments									
C\A/#		Walls		Roof			Floor			
500#	q (psf)	H (ft)	P (lb)	q (psf)	L (ft)	P (lb)	q (psf)	L (ft)	P (lb)	
1	15	8	960	18	2	288	0	0	0	749
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0

	Shear Wall Overturning Calculations									
Wind				Seismic						
500#	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity
1	0	24648	2995	2707	0.93	0	17736	2995	1843	0.63
2	0	NA	NA	NA	NA	0	NA	NA	NA	NA
3	0	NA	NA	NA	NA	0	NA	NA	NA	NA
4	0	NA	NA	NA	NA	0	NA	NA	NA	NA
5	0	NA	NA	NA	NA	0	NA	NA	NA	NA
6	0	NA	NA	NA	NA	0	NA	NA	NA	NA

Segmented Shear Wall

Story Shears								
Load	V _w (lb)	V _{eq} (lb)	y (ft)	M _w (lb*ft)	M _{eq} (lb*ft)			
1	3081	2217	8	24648	17736			
2	0	0	0	0	0			
3	0	0	0	0	0			
Totals	3081	2217	NA	24648	17736			

Chord Selection						
Chord A (ft ²) E (ksi)						
(2) 2x6 DF-L #2 16.5 1600						

Holdown Selection							
HD Configuration Δ _a (in) T _w (lb) T _{eq} (lb)							
None	No Holdown Required	0	300	300			

Sheathing Selection							
Sheathing Type v _w (plf) v _{eq} (plf) G _a (k/in) AR (MAX) C _d							
7/16" OSB w/ 8d @ 6/12" O.C. (B) 365.0 260.7 15 3.5 4							

	Shear Wall Deflection Limits							
RC	RC Structure Type h [*] Δ _a (in) Exterior Wall Finish H/							
Ш	II All other structures 0.02 Interior gypsum board 180							

	SW Geometry & Distribution Factors							
SW#	L (ft)	H _{eff} (ft)	A/R	WSP	1/k	Dist (%)		
1	12.5	8	0.64	1.00	3.05	0.53		
2	11	8	0.73	1.00	2.69	0.47		
3	0	0	NA	NA	NA	NA		
4	0	0	NA	NA	NA	NA		
5	0	0	NA	NA	NA	NA		
6	0	0	NA	NA	NA	NA		
	23.5				5.74			

	Sheathing Capacity Calculations						
	Wind			Seismic			
V _{max} (lb)	V _{all} (lb)	Unity	V _{max} (lb)	V _{all} (lb)	Unity		
131	365	0.36	94	261	0.36		
131	365	0.36	94	261	0.36		
NA	NA	NA	NA	NA	NA		
NA	NA	NA	NA	NA	NA		
NA	NA	NA	NA	NA	NA		
NA	NA	NA	NA	NA	NA		

STRUX

	Dead Loads Acting on Shear Wall Segments										
C\A/#		Walls			Roof				P (Ib)		
5VV#	q (psf)	H (ft)	P (lb)	q (psf)	L (ft)	P (lb)	q (psf)	L (ft)	P (lb)		
1	15	8	1500	18	5.25	1181	0	0	0	1609	
2	15	8	1320	18	5.25	1040	0	0	0	1416	
3	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	

	Shear Wall Overturning Calculations										
C14/#	Wind					Seismic					
5VV#	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	
1	0	13111	10055	244	0.81	0	9434	10055	-50	-0.17	
2	-50	11537	7786	291	0.97	0	8302	7786	47	0.16	
3	0	NA	NA	NA	NA	0	NA	NA	NA	NA	
4	0	NA	NA	NA	NA	0	NA	NA	NA	NA	
5	0	NA	NA	NA	NA	0	NA	NA	NA	NA	
6	0	NA	NA	NA	NA	0	NA	NA	NA	NA	

Segmented Shear Wall

	Story Shears							
Load	V _w (lb)	V _{eq} (lb)	y (ft)	M _w (lb*ft)	M _{eq} (lb*ft)			
1	1065	831	9	9585	7479			
2	0	0	0	0	0			
3	0	0	0	0	0			
Totals	1065	831	NA	9585	7479			

Chord Selection					
Chord A (ft ²) E (ksi)					
(2) 2x6 DF-L #2	16.5	1600			

Holdown Selection							
HD Configuration Δ _a (in) T _w (lb) T _{eq} (lb)							
None	No Holdown Required	0	300	300			

Sheathing Selection						
Sheathing Type v _w (plf) v _{eq} (plf) G _a (k/in) AR (MAX) C _d						
7/16" OSB w/ 8d @ 6/12" O.C. (B) 365.0 260.7 15 3.5 4						

Shear Wall Deflection Limits								
RC	RC Structure Type h [*] Δ _a (in) Exterior Wall Finish H/							
Ш	II All other structures 0.02 Interior gypsum board 180							

	SW Geometry & Distribution Factors										
SW#	L (ft)	H _{eff} (ft)	A/R	WSP	1/k	Dist (%)					
1	9.5	9	0.95	1.00	1.63	0.50					
2	9.5	9	0.95	1.00	1.63	0.50					
3	0	0	NA	NA	NA	NA					
4	0	0	NA	NA	NA	NA					
5	0	0	NA	NA	NA	NA					
6	0	0	NA	NA	NA	NA					
	19				3.26						

Sheathing Capacity Calculations									
	Wind			Seismic					
V _{max} (lb)	V _{all} (lb)	Unity	V _{max} (lb) V _{all} (lb) Unity						
56	365	0.15	44	261	0.17				
56	365	0.15	44	261	0.17				
NA	NA	NA	NA	NA	NA				
NA	NA	NA	NA	NA	NA				
NA	NA	NA	NA	NA	NA				
NA	NA	NA	NA	NA	NA				

STRUX

	Dead Loads Acting on Shear Wall Segments										
Walls				Roof			Floor				
3VV#	q (psf)	H (ft)	P (lb)	q (psf)	L (ft)	P (lb)	q (psf)	L (ft)	P (lb)	F _{tot} (ID)	
1	15	9	1283	18	14.5	2480	0	0	0	2257	
2	15	9	1283	18	14.5	2480	0	0	0	2257	
3	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	

	Shear Wall Overturning Calculations										
C14/#	Wind				Seismic						
SW# T _{above} (lb)	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	
1	0	4793	10722	-624	-2.08	0	3740	10722	-735	-2.45	
2	0	4793	10722	-624	-2.08	0	3740	10722	-735	-2.45	
3	0	NA	NA	NA	NA	0	NA	NA	NA	NA	
4	0	NA	NA	NA	NA	0	NA	NA	NA	NA	
5	0	NA	NA	NA	NA	0	NA	NA	NA	NA	
6	0	NA	NA	NA	NA	0	NA	NA	NA	NA	

Date: 2/22/2024

Segmented Shear Wall

Story Shears											
Load	d V_w (lb) V_{eq} (lb) y (ft) M_w (lb*ft) M_{eq} (ll										
1	1185.8	344.4	9	10672.2	3099.6						
2	0	0	0	0	0						
3	0	0	0	0	0						
Totals	1186	344	NA	10672	3100						

Chord Selection						
Chord A (ft ²) E (ksi)						
(2) 2x6 DF-L #2	16.5	1600				

Holdown Selection									
HD	HD Configuration Δ_a (in) T_w (lb) T_{eq} (lb)								
None	No Holdown Required	0	300	300					

Sheathing Selection								
Sheathing Type v _w (plf) v _{eq} (plf) G _a (k/in) AR (MAX) C _d								
7/16" OSB w/ 8d @ 6/12" O.C. (B)	365.0	260.7	15	3.5	4			

	Shear Wall Deflection Limits								
RC	RC Structure Type h [*] Δ _a (in) Exterior Wall Finish H/								
Ш	All other structures	0.02	Interior gypsum board	180					

	SW Geometry & Distribution Factors										
SW#	L (ft)	H _{eff} (ft)	A/R	WSP	1/k	Dist (%)					
1	9	9	1.00	1.00	1.54	0.50					
2	9	9	1.00	1.00	1.54	0.50					
3	0	0	NA	NA	NA	NA					
4	0	0	NA	NA	NA	NA					
5	0	0	NA	NA	NA	NA					
6	0	0	NA	NA	NA	NA					
	18				3.09						

Sheathing Capacity Calculations												
	Wind			Seismic								
V _{max} (lb)	V _{all} (lb)	Unity	V _{max} (lb) V _{all} (lb) Unity									
66	365	0.18	19	261	0.07							
66	365	0.18	19	261	0.07							
NA	NA	NA	NA	NA	NA							
NA	NA	NA	NA	NA	NA							
NA	NA	NA	NA	NA	NA							
NA	NA	NA	NA	NA	NA							
	Dead Loads Acting on Shear Wall Segments											
-------	--	--------	--------	---------	--------	--------	---------	--------	--------	-----------------------	--	--
S\A/#	Walls			Roof			Floor			D (Ib)		
3VV#	q (psf)	H (ft)	P (lb)	q (psf)	L (ft)	P (lb)	q (psf)	L (ft)	P (lb)	F _{tot} (ID)		
1	15	9	1215	18	14.5	2349	0	0	0	2138		
2	15	9	1215	18	14.5	2349	0	0	0	2138		
3	0	0	0	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	0	0	0		
5	0	0	0	0	0	0	0	0	0	0		
6	0	0	0	0	0	0	0	0	0	0		

	Shear Wall Overturning Calculations											
C1A/#	Wind					Seismic						
5VV#	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity		
1	0	5336	9623	-476	-1.59	0	1550	9623	-897	-2.99		
2	0	5336	9623	-476	-1.59	0	1550	9623	-897	-2.99		
3	0	NA	NA	NA	NA	0	NA	NA	NA	NA		
4	0	NA	NA	NA	NA	0	NA	NA	NA	NA		
5	0	NA	NA	NA	NA	0	NA	NA	NA	NA		
6	0	NA	NA	NA	NA	0	NA	NA	NA	NA		

Segmented Shear Wall

Story Shears										
Load	V _w (lb)	V _{eq} (lb)	y (ft)	M _w (lb*ft)	M _{eq} (lb*ft)					
1	2371	2411	8	18968	19288					
2	0	0	0	0	0					
3	0	0	0	0	0					
Totals	2371	2411	NA	18968	19288					

Chord Selection							
Chord A (ft ²) E (ksi)							
(2) 2x6 DF-L #2	16.5	1600					

Holdown Selection								
HD Configuration Δ _a (in) T _w (lb) T _{eq} (lb)								
None	No Holdown Required	0	300	300				

Sheathing Selection								
Sheathing Type v _w (plf) v _{eq} (plf) G _a (k/in) AR (MAX) C _d								
7/16" OSB w/ 8d @ 6/12" O.C. (B)	365.0	260.7	15	3.5	4			

Shear Wall Deflection Limits								
RC	RC Structure Type h [*] Δ _a (in) Exterior Wall Finish H/							
П	All other structures	0.02	Interior gypsum board	180				

	SW Geometry & Distribution Factors											
SW#	L (ft)	H _{eff} (ft)	A/R	WSP	1/k	Dist (%)						
1	6.5	8	1.23	1.00	1.59	0.22						
2	5	8	1.60	1.00	1.22	0.17						
3	4	8	2.00	1.00	0.98	0.13						
4	5	8	1.60	1.00	1.22	0.17						
5	5.25	8	1.52	1.00	1.28	0.18						
6	4	8	2.00	1.00	0.98	0.13						
	29.75				7.26							

	Sheathing Capacity Calculations										
	Wind		Seismic								
V _{max} (lb)	V _{all} (lb)	Unity	V _{max} (lb) V _{all} (lb) Un								
80	365	0.22	81	261	0.31						
80	365	0.22	81	261	0.31						
80	365	0.22	81	261	0.31						
80	365	0.22	81	261	0.31						
80	365	0.22	81	261	0.31						
80	365	0.22	81	261	0.31						

	Dead Loads Acting on Shear Wall Segments											
S\A/#	Walls			Roof			Floor			D (Ib)		
3VV#	q (psf)	H (ft)	P (lb)	q (psf)	L (ft)	P (lb)	q (psf)	L (ft)	P (lb)			
1	15	8	780	18	15.5	1814	0	0	0	1556		
2	15	8	600	18	15.5	1395	0	0	0	1197		
3	15	8	480	18	15.5	1116	0	0	0	958		
4	15	8	600	18	15.5	1395	0	0	0	1197		
5	15	8	630	18	15.5	1465	0	0	0	1257		
6	15	8	480	18	15.5	1116	0	0	0	958		

	Shear Wall Overturning Calculations											
C14/#	Wind					Seismic						
T _{above}	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity		
1	0	4144	5057	-140	-0.47	0	4214	5057	-130	-0.43		
2	0	3188	2993	39	0.13	0	3242	2993	50	0.17		
3	0	2550	1915	159	0.53	0	2593	1915	170	0.57		
4	0	3188	2993	39	0.13	0	3242	2993	50	0.17		
5	0	3347	3299	9	0.03	0	3404	3299	20	0.07		
6	0	2550	1915	159	0.53	0	2593	1915	170	0.57		

Segmented Shear Wall

Story Shears										
Load	V _w (lb)	V _{eq} (lb)	y (ft)	M _w (lb*ft)	M _{eq} (lb*ft)					
1	2341	2715	8	18728	21720					
2	0	0	0	0	0					
3	0	0	0	0	0					
Totals	2341	2715	NA	18728	21720					

Chord Selection						
Chord A (ft ²) E (ksi)						
(2) 2x6 DF-L #2	16.5	1600				

Holdown Selection									
HD	HD Configuration Δ_a (in) T_w (lb) T_{eq} (lb)								
STHD	STHD10, 6" Stem Wall, Midwall	0.146	2910	2550					

Sheathing Selection							
Sheathing Type v _w (plf) v _{eq} (plf) G _a (k/in) AR (MAX) C _d							
7/16" OSB w/ 8d @ 4/12" O.C. (B)	532.5	380.4	22	3.5	4		

Shear Wall Deflection Limits										
RC	RC Structure Type $h^*\Delta_a$ (in) Exterior Wall Finish H/									
П	II All other structures 0.02 Interior gypsum board 180									

	SW Geometry & Distribution Factors										
SW#	L (ft)	H _{eff} (ft)	A/R	A/R WSP		Dist (%)					
1	11.125	8	0.72	1.00	2.72	1.00					
2	0	0	NA	NA	NA	NA					
3	0	0	NA	NA	NA	NA					
4	0	0	NA	NA	NA	NA					
5	0	0	NA	NA	NA	NA					
6	0	0	NA	NA	NA	NA					
	11.125				2.72						

Sheathing Capacity Calculations									
	Wind		Seismic						
V _{max} (lb)	V _{all} (lb)	Unity	V _{max} (lb)	V _{all} (lb)	Unity				
210	533	0.40	244	380	0.64				
NA	NA	NA	NA	NA	NA				
NA	NA	NA	NA	NA	NA				
NA	NA	NA	NA	NA	NA				
NA	NA	NA	NA	NA	NA				
NA	NA	NA	NA	NA	NA				

	Dead Loads Acting on Shear Wall Segments											
C\A/#		Walls			Roof		Floor					
3VV#	q (psf)	H (ft)	P (lb)	q (psf)	L (ft)	t) P (lb) q (psf) L (ft)		L (ft)	P (lb)	r _{tot} (ID)		
1	15	8	1335	18	14	2804	0	0	0	2483		
2	0	0	0	0	0	0	0	0	0	0		
3	0	0	0	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	0	0	0		
5	0	0	0	0	0	0	0	0	0	0		
6	0	0	0	0	0	0	0	0	0	0		

	Shear Wall Overturning Calculations											
C14/#	Wind					Seismic						
500#	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity		
1	0	18728	13812	442	0.15	0	21720	13812	711	0.24		
2	0	NA	NA	NA	NA	0	NA	NA	NA	NA		
3	0	NA	NA	NA	NA	0	NA	NA	NA	NA		
4	0	NA	NA	NA	NA	0	NA	NA	NA	NA		
5	0	NA	NA	NA	NA	0	NA	NA	NA	NA		
6	0	NA	NA	NA	NA	0	NA	NA	NA	NA		

Perforated Shear Wall

Story	Story Shears		Chord S	election	
V _{wind} (lb)	V _{seismic} (lb)		Chord	A (ft ²)	E (ksi)
1185	527		(2) 2x6 DF-L #2	16.5	1600

Holdown Selection								
HD Configuration Δ_a (in) T_w (lb) T_{eq} (lb)								
STHD	STHD10, 6" Stem Wall, Corner	0.146	2910	2550				

Sheathing Selection								
Configuration v _w (plf) v _{eq} (plf) G _a (k/in) AR								
7/16" OSB w/ 8d @ 6/12" O.C. (B)	365.0	260.7	15	3.5				

	SW Geometry & Adjustment Factors						Opening Dimensions & Areas			
SW#	L _i (ft)	H (ft)	A/R	WSP	b _i (ft)	O#	LO _i (ft)	HO _i (ft)	AO _i (ft)	
1	4.5		1.78	1.00	4.50	1	6	7	42	
2	4.5		1.78	1.00	4.50	2	0	0	NA	
3	0	0	NA	NA	NA	3	0	0	NA	
4	0	0	NA	NA	NA	4	0	0	NA	
5	0		NA	NA	NA	5	0	0	NA	
6	0		NA	NA	NA		6		42	
	9.00		-	-	9.00]		-	-	

(Total area of the perforated shear wall)

(Total area of openings in the perforated shear wall)

(Total area sheathed with full height sheathing)

C_o **=** 0.6060606

(Shear capacity adjustment factor)

Sheathing Capacity Calculations								
Wind Seismic								
v _{max} (plf)	v _n (plf)	Unity	v _{max} (plf) v _n (plf) Unity					
217.3 365.0 0.60 96.6 260.7 0.37								

Shear Wall Overturning Calculations										
Wind				Seismic						
T _{above} (lb)	M _o (lb*ft)	T _{max} (lb)	Unity	T _{above} (lb) M _o (lb*ft) T _{max} (lb) Un						
0	9480	1738	0.60	0	4216	772.9	0.30			

Shear Wall Deflection Limits								
RC	RC Structure Type h [*] Δ _a (in) Exterior Wall Finish H/							
Ш	All other structures	0.02	Interior gypsum board	180				

Shear Wall Deflection Calculations								
Wind Seismic								
δ _{max} (in)	δ _{allow} (in)	Unity	δ_{max} (in) δ_{allow} (in) Unity					
0.249 0.533 0.47 0.183 1.92 0.10								

Segmented Shear Wall

	Story Shears										
Load	V _w (lb)	V _{eq} (lb)	y (ft)	M _w (lb*ft)	M _{eq} (lb*ft)						
1	1156	831	9	10404	7479						
2	0	0	0	0	0						
3	0	0	0	0	0						
Totals	1156	831	NA	10404	7479						

Chord Selection							
Chord A (ft ²) E (ksi)							
(2) 2x6 DF-L #2 16.5 1600							

Holdown Selection								
HD Configuration Δ_a (in) T_w (lb) T_{eq} (lb)								
STHD	STHD10, 6" Stem Wall, Corner	0.146	2910	2550				

Sheathing Selection								
Sheathing Type v _w (plf) v _{eq} (plf) G _a (k/in) AR (MAX) C _d								
7/16" OSB w/ 8d @ 6/12" O.C. (B) 365.0 260.7 15 3.5 4								

Shear Wall Deflection Limits								
RC	RC Structure Type h [*] Δ _a (in) Exterior Wall Finish H/							
П	II All other structures 0.02 Interior gypsum board 180							

	SW Geometry & Distribution Factors											
SW#	L (ft)	H _{eff} (ft)	A/R	WSP	1/k	Dist (%)						
1	3	9	3.00	0.67	0.51	0.50						
2	3	9	3.00	0.67	0.51	0.50						
3	0	0	NA	NA	NA	NA						
4	0	0	NA	NA	NA	NA						
5	0	0	NA	NA	NA	NA						
6	0	0	NA	NA	NA	NA						
	6				1.03							

Sheathing Capacity Calculations										
	Wind		Seismic							
V _{max} (lb)	V _{all} (lb)	Unity	V _{max} (lb)	Unity						
193	243	0.79	139	174	0.80					
193	243	0.79	139	174	0.80					
NA	NA	NA	NA	NA	NA					
NA	NA	NA	NA	NA	NA					
NA	NA	NA	NA	NA	NA					
NA	NA	NA	NA	NA	NA					

	Dead Loads Acting on Shear Wall Segments											
SW#	Walls			Roof			Floor			P (Ib)		
	q (psf)	H (ft)	P (lb)	q (psf)	L (ft)	P (lb)	q (psf)	L (ft)	P (lb)			
1	15	8	360	18	4.5	243	0	0	0	362		
2	15	8	360	18	4.5	243	0	0	0	362		
3	0	0	0	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	0	0	0		
5	0	0	0	0	0	0	0	0	0	0		
6	0	0	0	0	0	0	0	0	0	0		

Shear Wall Overturning Calculations										
SW#	Wind					Seismic				
	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity	T _{above} (lb)	M _{ot} (lb*ft)	M _R (lb*ft)	T _{max} (lb)	Unity
1	0	5202	543	1553	0.53	0	3740	543	1066	0.37
2	0	5202	543	1553	0.53	0	3740	543	1066	0.37
3	0	NA	NA	NA	NA	0	NA	NA	NA	NA
4	0	NA	NA	NA	NA	0	NA	NA	NA	NA
5	0	NA	NA	NA	NA	0	NA	NA	NA	NA
6	0	NA	NA	NA	NA	0	NA	NA	NA	NA